This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte...This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.展开更多
With remote sensing information products becoming increasingly varied and arguably improved, scientific applications of such products rely on their quality assessment. In an operational context such as the NASA (Natio...With remote sensing information products becoming increasingly varied and arguably improved, scientific applications of such products rely on their quality assessment. In an operational context such as the NASA (National Aeronautics and Space Administration) information production based on the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument on board Earth Observing System (EOS) Terra and Aqua satellites, efficient ways of detecting product anomaly, i.e., to discriminate between product artifacts and real changes in Earth processes being monitored, are extremely important to assist and inform the user communities about potential unreliability in the products. A technique for anomaly detection, known as MAD (the median of absolute deviate from the median), in MODIS land products via time series analysis is described, which can handle intra- and in-ter-annual variation in the data by using MAD statistics of the original data and their first-order difference. This method is shown to be robust and work across major land products, including NDVI, active fire, snow cover, and surface reflectance, and its applicabil-ity to multi-disciplinary products is anticipated.展开更多
the model in time series analysis are widely used in the field of economy. We often use the model in time series to analyze data, but without regard to the rationality of the model. In this paper, we introduce and ana...the model in time series analysis are widely used in the field of economy. We often use the model in time series to analyze data, but without regard to the rationality of the model. In this paper, we introduce and analyze Ping An Of China(601318) shares at the opening price(2013/01/04-2013/07/04).The model is established by analyzing data. Modeling steps of ARIMA model and GARCH model are presented in this paper. The data whether ARIMA model is suitable by white noise. Or the data whether GARCH model is suitable by since the correlation of variance test. By comparing the analysis, it selects a more reasonable model.展开更多
Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin.The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it...Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin.The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it.Through traditional theoretical approaches,the eigen-periods of harbor basin with regular shapes can be obtained.In our study,we proposed a numerical model to simulate the behavior characteristics of the harbor waves.A finite difference numerical model based on the shallow water equations(SWE) is developed to simulate incoming tsunami and tidal waves.By analyzing the time series data of water surface wave amplitude variations at selected synthetic observation locations,we estimate the wave height and arrival time in coastal area.Furthermore,we use frequency spectrum analysis to investigate the natural frequencies from the data recorded at the synthetic observation stations.展开更多
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)
文摘This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.
基金Funded by the National 973 Program of China(No.2006CB701302).
文摘With remote sensing information products becoming increasingly varied and arguably improved, scientific applications of such products rely on their quality assessment. In an operational context such as the NASA (National Aeronautics and Space Administration) information production based on the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument on board Earth Observing System (EOS) Terra and Aqua satellites, efficient ways of detecting product anomaly, i.e., to discriminate between product artifacts and real changes in Earth processes being monitored, are extremely important to assist and inform the user communities about potential unreliability in the products. A technique for anomaly detection, known as MAD (the median of absolute deviate from the median), in MODIS land products via time series analysis is described, which can handle intra- and in-ter-annual variation in the data by using MAD statistics of the original data and their first-order difference. This method is shown to be robust and work across major land products, including NDVI, active fire, snow cover, and surface reflectance, and its applicabil-ity to multi-disciplinary products is anticipated.
文摘the model in time series analysis are widely used in the field of economy. We often use the model in time series to analyze data, but without regard to the rationality of the model. In this paper, we introduce and analyze Ping An Of China(601318) shares at the opening price(2013/01/04-2013/07/04).The model is established by analyzing data. Modeling steps of ARIMA model and GARCH model are presented in this paper. The data whether ARIMA model is suitable by white noise. Or the data whether GARCH model is suitable by since the correlation of variance test. By comparing the analysis, it selects a more reasonable model.
基金supported by the National Natural Science Foundation of China (Grant Nos.40574012 and 40676039)National Basic Research Program of China(Grant No. 2008CB425701)+1 种基金National High-tech R& D Program of China(Grant No. 2010AA012402)K. C. Wong Magna Fund in Ningbo University
文摘Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin.The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it.Through traditional theoretical approaches,the eigen-periods of harbor basin with regular shapes can be obtained.In our study,we proposed a numerical model to simulate the behavior characteristics of the harbor waves.A finite difference numerical model based on the shallow water equations(SWE) is developed to simulate incoming tsunami and tidal waves.By analyzing the time series data of water surface wave amplitude variations at selected synthetic observation locations,we estimate the wave height and arrival time in coastal area.Furthermore,we use frequency spectrum analysis to investigate the natural frequencies from the data recorded at the synthetic observation stations.