期刊文献+
共找到19,663篇文章
< 1 2 250 >
每页显示 20 50 100
一种大尺度区域GNSS坐标时间序列自适应时空滤波方法 被引量:1
1
作者 刘斌 肖紫恩 +1 位作者 骆亚波 蒋一帆 《大地测量与地球动力学》 CSCD 北大核心 2024年第8期793-796,846,共5页
提出一种GNSS坐标时间序列自适应时空滤波方法,在规定阈值下将滤波区域自适应分为若干个子区域,进行共模误差的提取和去除。对陆态网184个GNSS站点垂向坐标序列进行时空滤波,3组随机实验中,自适应PCA时空滤波后的站点序列平均RMS值减少... 提出一种GNSS坐标时间序列自适应时空滤波方法,在规定阈值下将滤波区域自适应分为若干个子区域,进行共模误差的提取和去除。对陆态网184个GNSS站点垂向坐标序列进行时空滤波,3组随机实验中,自适应PCA时空滤波后的站点序列平均RMS值减少约39.7%、38.4%和39.7%,且优于整体PCA滤波。进一步分析滤波前后站点噪声特性变化,结果显示,相比于整体PCA滤波,自适应滤波方法中站点残差序列幂律噪声减少约17.8%。 展开更多
关键词 GNSS坐标时间序列 大尺度区域 PCA 自适应时空滤波
下载PDF
长时间序列生态系统服务权衡与协同驱动因素——以芜湖市生态系统服务功能极重要区为例 被引量:2
2
作者 刘颂 张浩鹏 +1 位作者 裴新生 王颖 《生态学报》 CAS CSCD 北大核心 2024年第5期1780-1790,共11页
人类对生态系统的管理和干预促使生态系统服务权衡向协同转化,有助于生态系统服务综合效益提升。但当前缺乏对长时间序列分析背景下生态系统服务权衡协同驱动因素及其非线性影响的理解与把握。以芜湖市“生态系统服务功能极重要区”为... 人类对生态系统的管理和干预促使生态系统服务权衡向协同转化,有助于生态系统服务综合效益提升。但当前缺乏对长时间序列分析背景下生态系统服务权衡协同驱动因素及其非线性影响的理解与把握。以芜湖市“生态系统服务功能极重要区”为研究案例,考虑生境质量、碳固定和土壤保持三种关键生态系统服务,基于多源数据,运用逐像元趋势叠加分析法评估1990—2020年间研究区生态系统服务变化趋势及其权衡协同空间分布规律,采用随机森林模型探索该区域生态系统服务权衡协同形成的关键驱动因素及其非线性影响效应。研究结果表明:(1)31年间芜湖市域生境质量显著下降区域面积约为提升面积的两倍,存在进一步衰退的风险。同时,城市扩张导致市郊边缘地带碳固定、土壤保持显著下降。(2)研究区生态系统服务供给能力受权衡协同影响显著,受影响区域总面积占比达64.48%。受权衡影响区域与协同影响区域存在显著空间差异。(3)土地利用强度是管理生态系统服务权衡向协同转化的主导因素。土地利用强度对权衡协同的影响表现出非线性特征并且存在影响阈值。当强度等级介于弱与中且偏向弱强度时对不同服务协同增益具有积极作用。 展开更多
关键词 时间序列 生态系统服务权衡与协同 驱动因素 随机森林
下载PDF
基于时间序列相似性与机器学习方法的页岩气井产量预测
3
作者 樊冬艳 杨灿 +4 位作者 孙海 姚军 张磊 付帅师 罗飞 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期119-126,共8页
页岩气井单变量产量预测存在较强的不确定性,而现场生产动态数据同时包括多个相关指标,针对如何选取合理的多变量数据对页岩气井产量进行预测,在保证计算效率的情况下提高预测精度。页岩气井的生产动态数据集包括日产气量、日产水量、... 页岩气井单变量产量预测存在较强的不确定性,而现场生产动态数据同时包括多个相关指标,针对如何选取合理的多变量数据对页岩气井产量进行预测,在保证计算效率的情况下提高预测精度。页岩气井的生产动态数据集包括日产气量、日产水量、套压、油压、油嘴直径、开井时间和温度等,采用欧式距离和动态时间弯曲距离对生产动态数据时间序列进行相似性度量,依据与日产气量的相关度,把数据分为强相关时间序列和弱相关时间序列;其次,基于卷积神经网络、循环神经网络、长短期记忆网络和门控神经网络分别对全时间序列、强相关序列、弱相关序列和单变量序列进行页岩气井产量预测;最后,以平均绝对误差、均方根误差和决定系数作为评价指标,得到不同序列的误差由小到大排序为强相关序列、全时间序列、弱相关序列、单变量序列,优选的机器学习方法为门控神经网络和长短期记忆网络。结果表明,采用机器学习方法结合页岩气井强相关性序列(日产气量、套压、油压、日产水量)能有效降低预测误差,提高页岩气井产量预测效果。 展开更多
关键词 页岩气井 机器学习 相似性 时间序列 产量预测
下载PDF
基于多尺度特征信息融合的时间序列异常检测 被引量:1
4
作者 衡红军 喻龙威 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期203-214,共12页
目前大多数的时间序列都缺少相应的异常标签,且现有基于重构的异常检测算法不能很好地捕获到多维数据间复杂的潜在相关性和时间依赖性,为了构建特征丰富的时间序列,提出一种多尺度特征信息融合的异常检测模型。该模型首先通过卷积神经... 目前大多数的时间序列都缺少相应的异常标签,且现有基于重构的异常检测算法不能很好地捕获到多维数据间复杂的潜在相关性和时间依赖性,为了构建特征丰富的时间序列,提出一种多尺度特征信息融合的异常检测模型。该模型首先通过卷积神经网络对滑动窗口内的不同序列进行特征卷积来获取不同尺度下的局部上下文信息。然后,利用Transformer中的位置编码对卷积后的时间序列窗口进行位置嵌入,增强滑动窗口中每一个时间序列和邻近序列之间的位置联系,并引入时间注意力获取数据在时间维度上的自相关性,并进一步通过多头自注意力自适应地为窗口内不同时间序列分配不同的权重。最后,对反卷积过程中上采样得到的窗口数据与不同尺度下得到的局部特征和时间上下文信息进行逐步融合,从而准确重构原始时间序列,并将重构误差作为最终的异常得分进行异常判定。实验结果表明,所构建模型在SWaT和SMD数据集上与基线模型相比F1分数均有所提升。在数据维度高且均衡性较差的WADI数据集上与GDN模型相比F1分数降低了1.66%。 展开更多
关键词 异常检测 多尺度信息融合 卷积神经网络 TRANSFORMER 多维时间序列 自编码器
下载PDF
一种基于线性模糊信息粒的时间序列预测算法
5
作者 杨昔阳 陈豪 +2 位作者 李志伟 张新军 颜星华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期188-198,共11页
[目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展... [目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展原理,研究各种模糊信息粒,包括区间型、三角型和高斯型模糊信息粒的距离定义.随后,结合时间序列片段的中心线段和离散程度信息,引入一类新颖的模糊信息粒.这些粒子可以有效捕捉指定时间范围内时间序列的趋势信息和离散程度,进一步地提出高斯型模糊信息粒距离的函数表达式和几何解释.为了将这些粒子用于时间序列预测,设计一类模糊推理预测系统,该系统可以利用历史数据构造模糊信息粒,并从高斯型模糊信息粒序列中提取模糊推理规则.[结果]高斯型模糊信息粒距离的函数表达式具有简洁的数学表示,可以合理地反映两个高斯模糊信息粒的中心线和离散程度的差异.模糊推理预测系统可以从高斯型模糊信息粒序列中提取有效的规则,实现时间序列的长期预测.实验结果表明,结合线性高斯模糊信息粒与模糊推理系统的预测方法在均方根误差和平均绝对百分比误差方面优于其他数值预测算法和其他模糊信息粒推理方法,包括自回归模型、自回归神经网络和回归向量机等.[结论]结合线性模糊信息粒和模糊推理系统的方法可以提高时间序列长期预测的效率.基于对数据集特征的合理抽象提出了一种新颖的线性模糊信息粒,并简洁地推导出了它们的距离定义.时间序列预测的成功表明,通过巧妙地设计信息粒,能够准确捕捉数据集中的关键特征,从而提高其他数据挖掘任务的效率,例如更快的计算速度和更准确的结果. 展开更多
关键词 线性模糊信息粒 模糊推理系统 时间序列预测
下载PDF
海底节点同步源高效混叠采集随机延迟时间序列分布原则研究
6
作者 张鹏 陈磅 +3 位作者 吴旭光 王海昆 钟亚聪 张振波 《石油物探》 CSCD 北大核心 2024年第2期279-288,共10页
近年来,海底节点(OBN)同步震源高效采集方法的研究成为地震勘探领域的热点之一。陆地可控震源数据分离激发参数的选择有时间延迟、相位、扫描长度等3种编码方式。但是,由于海上空气枪激发的特点,相位和扫描长度编码适用性差。只能采用... 近年来,海底节点(OBN)同步震源高效采集方法的研究成为地震勘探领域的热点之一。陆地可控震源数据分离激发参数的选择有时间延迟、相位、扫描长度等3种编码方式。但是,由于海上空气枪激发的特点,相位和扫描长度编码适用性差。只能采用时间延迟编码方式。海上混叠采集时间延迟序列的编码是影响数据分离效果的最关键因素之一。提出了一种基于正态分布约束的均匀随机时间分布定量编码准则,通过目标函数约束构建最优时间序列,并对比分析了实际自然随机激发时间和其它2种理论模拟的随机时间分布方式在共检波点域的分布特征。利用频率波数波数(FKK)域迭代反演方法进行混叠数据分离,单炮模拟测试结果表明,构建的最优时间序列比其它3种分布方式更能有效地分离混叠地震数据。海上三维工区高效混叠采集试验结果表明,根据最优准则构建的延迟时间序列,能够取得较好的数据分离效果。该研究结果为后续野外混叠采集的延迟激发时间设计提供了技术支持。 展开更多
关键词 海底节点 同步激发 延迟时间序列 同步激发源间距
下载PDF
时间序列异常检测方法研究综述
7
作者 谢丽霞 王嘉敏 +3 位作者 杨宏宇 胡泽 成翔 张良 《中国民航大学学报》 CAS 2024年第3期1-12,18,共13页
时间序列是按时间顺序排列的一组数据点或观测值,在金融学、气象学和股票市场分析等领域中被广泛应用。时间序列数据出现异常可能意味着出现潜在问题、异常事件或系统故障。为了便于未来在时间序列异常检测方法设计方面开展深入研究,本... 时间序列是按时间顺序排列的一组数据点或观测值,在金融学、气象学和股票市场分析等领域中被广泛应用。时间序列数据出现异常可能意味着出现潜在问题、异常事件或系统故障。为了便于未来在时间序列异常检测方法设计方面开展深入研究,本文首先介绍时间序列异常检测的相关概念;其次,展开分析国内外单变量和多变量时间序列异常检测方法;之后,介绍一些时间序列异常检测通用数据集并比较常见检测方法在这些数据集上的性能;最后,探讨未来时间序列异常检测方法设计的重点研究方向,以期对相关理论和应用研究提供参考。 展开更多
关键词 时间序列 异常检测 单变量时间序列 多变量时间序列 通用数据集
下载PDF
一种改进聚类算法的时间序列异常检测方法 被引量:2
8
作者 钱宇 蔡文铤 《现代计算机》 2024年第1期46-51,共6页
时间序列异常检测被广泛应用于民航领域,对飞机快速存取记录器收集的时间序列数据进行异常检测为识别降低安全裕度的事件提供了有力手段。为了提高时间序列异常检测的准确率,提出一种基于改进聚类算法的时间序列异常检测方法。将K-Medo... 时间序列异常检测被广泛应用于民航领域,对飞机快速存取记录器收集的时间序列数据进行异常检测为识别降低安全裕度的事件提供了有力手段。为了提高时间序列异常检测的准确率,提出一种基于改进聚类算法的时间序列异常检测方法。将K-Medoids聚类算法的欧氏距离度量方法替换为动态时间规整距离度量方法,根据样本点与中心点之间的距离判定异常,研究通过飞机飞行参数超限检测测试时间序列异常检测方法的有效性。实验结果表明,与传统聚类算法相比该方法的异常检测准确率和F1分数更高。聚类算法使用动态时间规整度量距离优化了时间序列相似性度量的精度,可以对形态特点相似的时间序列数据更好地聚类,提高了聚类算法的准确性。 展开更多
关键词 时间序列 飞行数据 聚类 动态时间规整 异常检测
下载PDF
基于在线监测时间序列数据的水质预测模型研究进展
9
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
下载PDF
GPS时间序列共模误差提取方法及对比分析
10
作者 孔祥瑞 李梦莹 +1 位作者 翟丽娜 王喜龙 《工程勘察》 2024年第9期77-82,共6页
区域GPS网中,各个测站坐标时间序列会存在共模误差(CME),该误差会对GPS测站坐标精度产生一定影响,因此去除共模误差对提高站点观测精度具有重要意义。本文在叠加滤波方法的基础上,以各个GPS站点相关性大小为权重进行加权,利用相关加权... 区域GPS网中,各个测站坐标时间序列会存在共模误差(CME),该误差会对GPS测站坐标精度产生一定影响,因此去除共模误差对提高站点观测精度具有重要意义。本文在叠加滤波方法的基础上,以各个GPS站点相关性大小为权重进行加权,利用相关加权滤波方法对辽宁及周边省份GPS观测数据进行处理分析,提取共模误差向量,并与叠加滤波的结果进行对比和分析。结果表明,两者均能在一定程度上提取共模误差向量,相关加权叠加滤波法比叠加滤波法具有更好的适用性,均方根提升更为明显,能够更好地提取共模误差。 展开更多
关键词 GPS坐标时间序列 共模误差 相关加权叠加滤波
下载PDF
增强局部注意力的时间序列分类方法
11
作者 李克文 柯翠虹 +2 位作者 张敏 王晓晖 耿文亮 《计算机工程与应用》 CSCD 北大核心 2024年第1期189-197,共9页
现有时间序列分类方法普遍基于一种循环网络结构解决时间序列点值耦合问题,无法并行计算,导致计算资源浪费,因此提出一种增强局部注意力的时间序列分类方法。该方法拟合混合距离信息以增加时间序列位置感知能力,将混合距离信息融入自注... 现有时间序列分类方法普遍基于一种循环网络结构解决时间序列点值耦合问题,无法并行计算,导致计算资源浪费,因此提出一种增强局部注意力的时间序列分类方法。该方法拟合混合距离信息以增加时间序列位置感知能力,将混合距离信息融入自注意矩阵计算中,从而扩展自注意力机制;构造多尺度卷积注意力获取多尺度局部前向信息,以解决标准自注意力机制基于点值计算存在注意力混淆的问题;使用改进后的自注意力机制构造时序自注意分类模块,并行计算处理时间序列分类任务。实验结果表明,与现有时间序列分类方法相比,基于局部注意力增强的时间序列分类方法能够加速收敛,有效提高时序序列分类效果。 展开更多
关键词 时间序列分类 自注意力机制 位置感知 多尺度卷积
下载PDF
一种基于时间序列分解和时空信息提取的云服务器异常检测模型
12
作者 唐伦 赵禹辰 +1 位作者 薛呈呈 陈前斌 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2638-2646,共9页
异常检测是维护云数据中心性能的一项重要任务。云数据中心中运行着大量的云服务器以实现各种云计算功能。由于云数据中心的性能取决于云服务的正常运行,因此检测和分析云服务器中的异常至关重要。为此,该文提出一种基于时间序列分解和... 异常检测是维护云数据中心性能的一项重要任务。云数据中心中运行着大量的云服务器以实现各种云计算功能。由于云数据中心的性能取决于云服务的正常运行,因此检测和分析云服务器中的异常至关重要。为此,该文提出一种基于时间序列分解和时空信息提取的云服务器异常检测模型。首先,提出带时空信息提取模块的双向Wasserstein生成对抗网络算法(BiWGAN-GTN),该算法在具有梯度惩罚的双向Wasserstein生成对抗网络(BiWGAN-GP)算法的基础上,将生成器与编码器替换为由图卷积网络(GCN)与时间卷积网络(TCN)组成的时空信息提取模块(GTN),实现对数据空时信息的提取;其次,提出半监督BiWGAN-GTN算法来识别多维时间序列中的异常,以在训练过程中避免异常数据侵入的风险并增强模型鲁棒性。最后设计多通道BiWGAN-GTN算法-MCBiWGAN-GTN以实现降低数据复杂度并提升模型学习效率的目标。利用带有自适应噪声完全集合经验模态分解(CEEMDAN)算法将时序数据分解,然后将不同的分量送入对应通道下的BiWGAN-GTN算法中训练。在真实世界云数据中心数据集Clearwater和MBD上采用精确率、召回率和F1分数这3个性能指标验证了该文所提模型的有效性。实验结果表明,MCBiWGAN-GTN在这两个数据集上的性能稳定并优于所比较的方法。 展开更多
关键词 云服务器异常检测 时间序列分解 生成对抗网络 时空信息提取模块
下载PDF
双向长短期记忆网络的时间序列预测方法
13
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 时间序列 双向长短期记忆网络 长短期记忆网络 注意力机制 深度学习
下载PDF
基于时间序列压缩分割的监测数据异常识别算法研究
14
作者 蒲黔辉 张子怡 +2 位作者 肖图刚 洪彧 文旭光 《桥梁建设》 EI CSCD 北大核心 2024年第3期15-23,共9页
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时... 为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。 展开更多
关键词 斜拉桥 健康监测数据 异常识别 PLR_SIP算法 LOF算法 时间序列 欧氏距离 局部离群因子
下载PDF
中国内地GPS坐标时间序列噪声模型特征及其对站点速率影响
15
作者 袁兴明 孙玉强 彭正斌 《导航定位学报》 CSCD 北大核心 2024年第2期94-101,共8页
为了进一步评估全球定位系统(GPS)时间序列噪声模型水平和垂直速率的大小,及其对误差的影响,选取中国内地227个GPS连续基准站2010—2020年南北、东西和垂直3个方向的坐标时间序列,采用6种噪声模型或噪声组合模型对其进行噪声分析。结果... 为了进一步评估全球定位系统(GPS)时间序列噪声模型水平和垂直速率的大小,及其对误差的影响,选取中国内地227个GPS连续基准站2010—2020年南北、东西和垂直3个方向的坐标时间序列,采用6种噪声模型或噪声组合模型对其进行噪声分析。结果表明,中国内地GPS坐标时间序列噪声模型存在多样性,且部分站点在不同方向的噪声模型也存在差异,主要以一阶高斯马尔可夫+随机漫步噪声(GGMWN)和闪烁噪声+白噪声(FNWN)为主;在100°E附近的GPS站点噪声特性差异最为显著;噪声模型与速率之间的关系分析表明噪声模型对水平向速率的大小和误差影响较小,在现实计算中可不考虑噪声对水平速度的影响,但对垂向速率的大小和误差影响显著;考虑噪声模型可有效提高垂向速率的精度,同时也可能会改变部分站点的垂向运动方向,所以在现实计算中须考虑噪声对垂向速率的影响。 展开更多
关键词 全球定位系统(GPS)连续站 坐标时间序列 噪声模型 站点速率
下载PDF
基于模态分解与SRU网络的时间序列预测
16
作者 钱钧 何曦 +1 位作者 冯焱侠 李维勤 《自动化技术与应用》 2024年第8期99-104,共6页
时间序列预测在工业、农业、金融及军事等领域中具有重要的应用价值。为了进一步提高预测的可靠性和准确性,构建一种基于模态分解与SRU网络的杂交预测模型。首先,针对模态个数难以确定的问题,构建基于平均样本熵来确定模态个数的自适应... 时间序列预测在工业、农业、金融及军事等领域中具有重要的应用价值。为了进一步提高预测的可靠性和准确性,构建一种基于模态分解与SRU网络的杂交预测模型。首先,针对模态个数难以确定的问题,构建基于平均样本熵来确定模态个数的自适应变分模态分解(AVMD)模型,以减少不同频率上的混叠及降低随机噪声的干扰。通过在Adam算法中引入了随机调整参数,来提高SRU网络的训练速度及增强网络跳出局部最优解的能力。最后,发展一种基于AVMD与SRU网络的杂交模型。为评估提出的预测模型的可靠性和准确性,将之与一些最新预测方法做比较。电力负荷序列的实验结果表明,所提出的杂交预测模型具有较高的准确性和可靠性。 展开更多
关键词 预测 时间序列 模态分解 平均样本熵 随机调整参数 循环单元
下载PDF
顾及地球物理效应的GNSS高程时间序列AdaBoost预测和插值方法
17
作者 鲁铁定 李祯 《测绘学报》 EI CSCD 北大核心 2024年第6期1077-1085,共9页
传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和... 传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。 展开更多
关键词 GNSS高程时间序列 地球物理效应 预测 插值 自适应提升算法
下载PDF
某三甲中医医院ICU感染发生率时间序列分析及趋势预测
18
作者 杨丽萍 程立军 +5 位作者 李潇 杨雳畯 丁淑玉 王靖研 黄文莉 毛宝宏 《西部中医药》 2024年第9期78-82,共5页
目的:了解某三甲中医医院ICU感染发生率的时序分布特征,预测其发生规律和趋势,为中医医院ICU感染监测提供数据支持。方法:收集某三甲中医医院2019年1月至2024年2月ICU医院感染数据。利用求和自回归滑动平均模型(Autoregressive integrat... 目的:了解某三甲中医医院ICU感染发生率的时序分布特征,预测其发生规律和趋势,为中医医院ICU感染监测提供数据支持。方法:收集某三甲中医医院2019年1月至2024年2月ICU医院感染数据。利用求和自回归滑动平均模型(Autoregressive integrated moving average,ARIMA)对ICU感染发生趋势进行预测并评价其预测效果。结果:2019年1月至2024年2月某三甲中医医院ICU医院感染发生率为2.61%(232/8895);时间序列分析显示,ICU医院感染发生率波动较大且存在一定周期性,总体呈下降趋势。根据赤池信息准则和贝叶斯信息准则拟合,ARIMA(0,1,1)为最优预测模型。经参数估计与效果评价,感染发生率实际值均在预测值95%可信区间内,模型预测效果较好。结论:运用ARIMA对某三甲中医医院ICU医院感染发生率的预测结果良好,可显示其长期发生规律与趋势,能为医院感染监测提供科学依据。 展开更多
关键词 医院感染 重症监护病房 求和自回归滑动平均模型 时间序列 趋势预测
下载PDF
联合张量补全与循环神经网络的时间序列插补法
19
作者 何军 赖赵远 时勘 《数据采集与处理》 CSCD 北大核心 2024年第3期598-608,共11页
现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,... 现存的插补方法大致分为基于统计的插补法和基于深度学习的插补法。基于统计的插补法只能捕捉线性时间关系,导致无法精准建模时间序列的非线性关系;基于深度学习的插补法往往没有考虑到不同时间序列之间的相关性。针对现有方法的问题,本文提出了联合张量补全与循环神经网络的时间序列插补法。首先,将多元时间序列建模成张量,通过张量的低秩补全捕获不同时间序列之间的关系。其次,提出了一个基于时间的动态权重,将张量插补结果和循环神经网络的预测结果进行融合,避免因为连续缺失导致的预测误差累积。最后,在多个真实的时间序列数据集上对所提方法进行了实验评估,结果显示该模型优于已有相关模型,且基于插补后的时间序列可以提升时间序列预测效果。 展开更多
关键词 张量补全 时间序列插补 循环神经网络
下载PDF
基于坐标时间序列的地心运动分析与预测
20
作者 朱新慧 王刃 +1 位作者 贾彦锋 柯能 《海洋测绘》 CSCD 北大核心 2024年第1期36-42,共7页
地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(glo... 地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(global geophysical fluids center,GGFC)和国际GNSS服务(international gnss service,IGS)第三次重处理(IGSR03)提供的3组地心运动数据,首先对其一致性和差异进行了分析,然后分别利用谐波模型和Diff-LSTM模型对地心运动进行了长期和短期的建模与预测,结果显示,GGFC地心运动的预测精度优于1.5 mm,而Diff-LSTM模型的地心运动预测结果在短期内优于谐波模型,当预测步长为17时,GGFC和IGSR03的地心运动预测精度均能达到甚至优于1 mm。表明地心运动的预测精度能够满足基于地球质量中心(center of mass of the total earth system,CM)的瞬时地球参考框架的建立与维持。 展开更多
关键词 地球参考框架 地心运动预测 坐标时间序列 谐波模型 Diff-LSTM模型
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部