To achieve green hydrolysis technology of hemicellulose through repeated using hydrolysate, the hydrolysis of hemicellulose in corncob was studied. The influence of repeated use of corncob hydrolysate on concentration...To achieve green hydrolysis technology of hemicellulose through repeated using hydrolysate, the hydrolysis of hemicellulose in corncob was studied. The influence of repeated use of corncob hydrolysate on concentrations of D-xylose and L-arabinose was investigated. The loss rates of D-xylose in the prepared D-xylose solutions both with and without corncob, and repeated using corncob hydrolysate under identical acidity condition were discussed. The result shows that D-XyIOSe concentration and L-arabinose concentration are all gradually increas- ing with the growing time of repeated use of corncob hydrolysate. After the fifth repetition, the concentrations of D-xylose and L-arabinose are 196.7 g. L-1 and 22.0 g.L-1, respectively. Substance inhibiting the degradation of D-xylose is generated during repeated use of corncob hydrolysate, and the production is further proved by the change of D-xylose concentration and the loss rate of D-xylose over heating time.展开更多
It is important to quantify mass variations in the Antarctic ice sheet hybrid filtering scheme employing a combination of the decorrelated to study the global sea-level rise and climate change. A filter P3M6 and 300 k...It is important to quantify mass variations in the Antarctic ice sheet hybrid filtering scheme employing a combination of the decorrelated to study the global sea-level rise and climate change. A filter P3M6 and 300 km Fan filter was used, and the sur- face mass variations over the Antarctic are recovered from GRACE CSR RL04 monthly gravity field models from August 2002 to June 2010. After deduction of leakage errors using the GLDAS hydrological model and postglacial rebound effects using the glacial isostatic adjustment model IJ05, the variations in the ice sheet mass are obtained. The results reveal that the rate of melting of the Antarctic ice sheet is 80.0 Gt/a and increasing and contributes 0.22 mm/a to the global sea-level rise; the mass loss rate is 78.3 Gt/a in the West Antarctic and 1.6 Gt/a in the East Antarctic. The average mass loss rate increases from 39.3 Gt/a for the period 2002-2005 to 104.2 Gt/a for the period 2006-2010, and its corresponding contribution to the global sea-level rise increases from 0.11 to 0.29 mm/a, which indicates accelerated ice mass loss over the Antarctic since 2006. Moreover, the mass accumulation rates for Enderby Land and Wilkes Land along the coast of East Antarctica decrease for the period 2006-2008 but increase evidently after 2009.展开更多
基金Supported by the National Natural Science Foundation of China(21376231)
文摘To achieve green hydrolysis technology of hemicellulose through repeated using hydrolysate, the hydrolysis of hemicellulose in corncob was studied. The influence of repeated use of corncob hydrolysate on concentrations of D-xylose and L-arabinose was investigated. The loss rates of D-xylose in the prepared D-xylose solutions both with and without corncob, and repeated using corncob hydrolysate under identical acidity condition were discussed. The result shows that D-XyIOSe concentration and L-arabinose concentration are all gradually increas- ing with the growing time of repeated use of corncob hydrolysate. After the fifth repetition, the concentrations of D-xylose and L-arabinose are 196.7 g. L-1 and 22.0 g.L-1, respectively. Substance inhibiting the degradation of D-xylose is generated during repeated use of corncob hydrolysate, and the production is further proved by the change of D-xylose concentration and the loss rate of D-xylose over heating time.
基金supported by the National Basic Research Program of China (Grant No. 2007CB714405)the National Natural Science Foundation of China (Grant No. 40874002)the Program for New Century Excellent Talents in University (Grant No. NCET-07-0635)
文摘It is important to quantify mass variations in the Antarctic ice sheet hybrid filtering scheme employing a combination of the decorrelated to study the global sea-level rise and climate change. A filter P3M6 and 300 km Fan filter was used, and the sur- face mass variations over the Antarctic are recovered from GRACE CSR RL04 monthly gravity field models from August 2002 to June 2010. After deduction of leakage errors using the GLDAS hydrological model and postglacial rebound effects using the glacial isostatic adjustment model IJ05, the variations in the ice sheet mass are obtained. The results reveal that the rate of melting of the Antarctic ice sheet is 80.0 Gt/a and increasing and contributes 0.22 mm/a to the global sea-level rise; the mass loss rate is 78.3 Gt/a in the West Antarctic and 1.6 Gt/a in the East Antarctic. The average mass loss rate increases from 39.3 Gt/a for the period 2002-2005 to 104.2 Gt/a for the period 2006-2010, and its corresponding contribution to the global sea-level rise increases from 0.11 to 0.29 mm/a, which indicates accelerated ice mass loss over the Antarctic since 2006. Moreover, the mass accumulation rates for Enderby Land and Wilkes Land along the coast of East Antarctica decrease for the period 2006-2008 but increase evidently after 2009.