In order to obtain related brain electrical components and neural bases of physiology assessment of icon elements in a digital human-computer interface the modified sample-delay matching task experimental paradigm is ...In order to obtain related brain electrical components and neural bases of physiology assessment of icon elements in a digital human-computer interface the modified sample-delay matching task experimental paradigm is used under different time pressures 4 000 and 2 000 ms and different icon quantities three five and ten icons on icon memory based on event-related potential ERP technology.Experimental results demonstrate that P300 has significant volatility changes and the maximum amplitude around the middle line of the parietal area PZ and P200 has obvious volatility changes around the middle line of the frontal and central area FCZ during icon cognition.P300 and P200 amplitudes increase as tasks become more difficult.Thus P300 latency is positively correlated with task difficulty. ERP research on the characteristics of icon memory will be an important reference standard in guiding user neurocognitive behavior and physiology assessment on interface usability.展开更多
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining ...In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining equation of Lie symmetry of the system is established. The theorem of the Lie symmetrical Hojman conserved quantity of the system is presented. The above results are generalization to Hojman's conclusions, in which the time parameter is not variable and the system is non-relativistic. An example is given to illustrate the application of the results in the last.展开更多
Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the req...Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.展开更多
This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possib...This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.展开更多
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimizatio...Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.展开更多
Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though th...Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though the critical value method gets extensiveapplication in practice, it stresses only on the superficial change of data and overlooks alot of features of rock burst and useful information that is concealed and hidden in the observationtime series.Pattern recognition extracts the feature value of time domain, frequencydomain and wavelet domain in observation time series to form Multi-Feature vectors,using Euclidean distance measure as the separable criterion between the same typeand different type to compress and transform feature vectors.It applies neural network asa tool to recognize the danger of rock burst, and uses feature vectors being compressedto carry out training and studying.It is proved by test samples that predicting precisionshould be prior to such traditional predicting methods as pattern recognition and critical indicatormethod.展开更多
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he...Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.展开更多
Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events ar...Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.展开更多
The effects of gas temperature fluctuations on soot formation and oxidation reactions are investigated numerically in a reacting flow. The instantaneous variations of soot mass fraction with time are obtained under th...The effects of gas temperature fluctuations on soot formation and oxidation reactions are investigated numerically in a reacting flow. The instantaneous variations of soot mass fraction with time are obtained under the time-averaged gas temperature of 1500-1700 K. The simulation results show that the gas temperature fluctuation has obvious influence on the instantaneous processes of soot formation and oxidation. Within the present range of gas temperature, the gas temperature fluctuation results in generally lower soot mass fraction comparing to that without gas temperature fluctuation. The increase in the fluctuation amplitude of gas temperature leads to decrease in time-averaged soot mass fraction and increase in time-averaged soot particle number density.展开更多
The airborne pollen grains of Afyon have been studied for a two_year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentif...The airborne pollen grains of Afyon have been studied for a two_year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones. Of them, 6 732 were identified in 1999 and 7 635 in 2000. Of the total pollen grains, 69.67% were arboreal, 26.64% non_arboreal and 3.68 % unidentified. The majority of the investigated pollen grains were from Pinus, Gramineae, Cupressaceae, Platanus , Chenopodiaceae/Amaranthaceae, Quercus, Ailanthus, Moraceae, Juglans , Salix, Cedrus and Rosaceae. The highest level of pollen grains was in May.展开更多
The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volu...The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.展开更多
基金The National Natural Science Foundation of China(No.71271053,71071032)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0093)
文摘In order to obtain related brain electrical components and neural bases of physiology assessment of icon elements in a digital human-computer interface the modified sample-delay matching task experimental paradigm is used under different time pressures 4 000 and 2 000 ms and different icon quantities three five and ten icons on icon memory based on event-related potential ERP technology.Experimental results demonstrate that P300 has significant volatility changes and the maximum amplitude around the middle line of the parietal area PZ and P200 has obvious volatility changes around the middle line of the frontal and central area FCZ during icon cognition.P300 and P200 amplitudes increase as tasks become more difficult.Thus P300 latency is positively correlated with task difficulty. ERP research on the characteristics of icon memory will be an important reference standard in guiding user neurocognitive behavior and physiology assessment on interface usability.
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
文摘In this paper, we study the Lie symmetrical Hojman conserved quantity of a relativistic mechanical system under general infinitesimal transformations of groups in which the time parameter is variable. The determining equation of Lie symmetry of the system is established. The theorem of the Lie symmetrical Hojman conserved quantity of the system is presented. The above results are generalization to Hojman's conclusions, in which the time parameter is not variable and the system is non-relativistic. An example is given to illustrate the application of the results in the last.
基金supported by the National 863 Program(No.2008AA042207)
文摘Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement, the requirements for the measurement of echo time of flight put forward by the ultrasonic flow measurement are analyzed. A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantization error. The phase delay interpolation is used to reduce the quantization error of pulse counting for further improving the time measurement resolution. Test data show that the systexn for the measurement of the ultrasonic echo time of flight based on this algorithm and implemented on an Field Programmable Gate Army(FleA) needs a relatively short time for measurement, and has a measurement error of less than 105 ps.
基金Project(IFP-A-2022-2-5-24) supported by Institutional Fund Projects,University of Hafr Al Batin,Saudi Arabia。
文摘This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China
文摘Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
文摘Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though the critical value method gets extensiveapplication in practice, it stresses only on the superficial change of data and overlooks alot of features of rock burst and useful information that is concealed and hidden in the observationtime series.Pattern recognition extracts the feature value of time domain, frequencydomain and wavelet domain in observation time series to form Multi-Feature vectors,using Euclidean distance measure as the separable criterion between the same typeand different type to compress and transform feature vectors.It applies neural network asa tool to recognize the danger of rock burst, and uses feature vectors being compressedto carry out training and studying.It is proved by test samples that predicting precisionshould be prior to such traditional predicting methods as pattern recognition and critical indicatormethod.
基金support for this study was provided by the National Natural Science Foundation of China (No.40776006)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060423009)the Science and Technology Development Program of Shandong Province (Grant No.2008GGB01099)
文摘Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.
基金supported by the National Key Technology Research and Development Program(No. 2008BAC44B03,2007BAC29B04)
文摘Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.
基金Supported jointly by the National Natural Science Foundation of China(51076082)the State Key Laboratory of Engines(SKLE200902)
文摘The effects of gas temperature fluctuations on soot formation and oxidation reactions are investigated numerically in a reacting flow. The instantaneous variations of soot mass fraction with time are obtained under the time-averaged gas temperature of 1500-1700 K. The simulation results show that the gas temperature fluctuation has obvious influence on the instantaneous processes of soot formation and oxidation. Within the present range of gas temperature, the gas temperature fluctuation results in generally lower soot mass fraction comparing to that without gas temperature fluctuation. The increase in the fluctuation amplitude of gas temperature leads to decrease in time-averaged soot mass fraction and increase in time-averaged soot particle number density.
文摘The airborne pollen grains of Afyon have been studied for a two_year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones. Of them, 6 732 were identified in 1999 and 7 635 in 2000. Of the total pollen grains, 69.67% were arboreal, 26.64% non_arboreal and 3.68 % unidentified. The majority of the investigated pollen grains were from Pinus, Gramineae, Cupressaceae, Platanus , Chenopodiaceae/Amaranthaceae, Quercus, Ailanthus, Moraceae, Juglans , Salix, Cedrus and Rosaceae. The highest level of pollen grains was in May.
基金supported by the European project ADIGMA on the development of innovative solution algorithms for aerodynamic simulations,NSFC grant 10671091,SRF for ROCS,SEM and JSNSF BK2006511.
文摘The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.