This paper reviews the history and progress of research on active tectonics in China and overseas.By giving a brief introduction on the history of active tectonic research in China and other countries,the paper sums u...This paper reviews the history and progress of research on active tectonics in China and overseas.By giving a brief introduction on the history of active tectonic research in China and other countries,the paper sums up the process and development of quantitative investigation of active tectonics since the 1980s.The focus is on the main efforts and progress made in China on certain aspects of research,such as basic surveys and applied investigation of active tectonics,the study of theories related to regional active tectonics and their kinematics and geodynamics,surveys on coupling relations between deep and shallow structures,active fault surveys and prospecting and seismic hazard assessment in urban areas,as well as the efforts made using Quaternary geochronology.Furthermore,the paper looks back on Chinese quantitative investigation of active tectonics in China and sums up cognitions derived from studies on the determination of several basic and measurable parameters of active tectonics.These parameters include the length of fault and fault segmentation,coseismic slip and cumulative slip,fault slip rate,the sequence of paleoearthquake events and the time elapsed since the most recent event.At the same time,efforts and progress made in China on assessing the long-term seismic potential for active faults and evaluating the risk from potential active fault movement have been reviewed by summarizing research on developing theories,models,methods and the application of time-dependent seismic potential to probabilistic assessment,magnitude estimation for potential earthquakes on active faults,and the forecast of potential risk caused by active fault movement.Finally,in consideration of the realities and problems in the research of active tectonics in China,the authors put forward several suggestions for issues worthy of more attention for further investigation in the future.展开更多
Study on fault activity is a fundamental part of earthquake prediction and earthquake relief in big cities.In the active fault exploration in Zhengzhou,the spatial distribution,geological features and activity of the ...Study on fault activity is a fundamental part of earthquake prediction and earthquake relief in big cities.In the active fault exploration in Zhengzhou,the spatial distribution,geological features and activity of the Huayuankou fault,the Shangjie fault and the Xushui fault were determined using the seismic prospecting method.New understanding about the characteristics of the faults was gained.This provides reliable basic data for future earthquake forecast and earthquake relief work in Zhengzhou.In addition,we proposed some ways to identify fault activity through analyzing the characteristics of the activity of a fault and raised an effective method for exploring active faults in big cities and exploring concealed faults in regions covered with thick overburdens.展开更多
Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi La...Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi Lamb wave modes are mostly based on various timefrequency methods such as Wigner-Ville distribution, shorttime Fourier transform, and recently explored wavelet transform(WT). Frankly speaking, uses of these signal processing methods improve the accuracy of the arrival time extraction to a great extent relative to directly extract arrival times in time-domain from Lamb waveforms. Hilbert-Huang transform(HHT) is also an efficient way for analyzing and processing non-stationary signals. The resolving power of time and frequency is restricted from Heisenberg principle in wavelet analysis, while in HHT, the time resolving power is precise and steady, and frequency resolving power is adaptive according to signal intrinsic characteristics. Conclusion can be made that the HI-IT method is more adaptive than WT anal;/sis in ~.!~M~ zing non-stationary signals. Based on the abo~, ~tiaf method is attempted to extract arrival times from Lamb waveforms in this paper. The Lamb wave tomography images generated with arrival times from HHT method were compared with those of WT. The results show that the new method improves the quality of tomography image, which demonstrates the applicability of HHT method in extracting arrival times of Lamb waves.展开更多
Later earthquake-sourced PmP phases have the potential to significantly improve ray coverage and resolution of crustal tomography methods,as their trajectories are quite different from those of shallower P phases.This...Later earthquake-sourced PmP phases have the potential to significantly improve ray coverage and resolution of crustal tomography methods,as their trajectories are quite different from those of shallower P phases.This paper analyzes the characteristics of later PmP arrival times from earthquakes with different focal depths.The results show that PmP arrival time differences from earthquakes at a range of focal depths are gradually lowered with increasing offset.We found that where the first recorded P-wave phase was the intra-crustal refraction phase(Pg),the differences in arrival time between Pg and PmP phases decreased with increasing focal depth at an offset of less than 120 km.Where the first P-wave phase is the upper mantle refraction phase(Pn),the difference in arrival times between Pn and PmP phases became larger with an increase in focal depth at an offset of more than 150 km.A total of 394 PmP phases and 3356 first P phases were picked from seismograms in the active volcanic area of northeastern Japan,according to the characteristics of calculated arrival times,amplitudes and particle motions.These were used to investigate the role of PmP phases in crustal tomography beneath an active volcanic region.Results of the detailed resolution analysis show that the addition of PmP data can improve significantly the resolution of the lower crustal structure in tomographic images.After the PmP data were included in the tomographic inversion,the path of upwelling magma,along which a series of low-frequency microearthquakes is clearly distributed,was better imaged.These results suggest that the PmP phase has an important role in detailed crustal tomography.展开更多
基金funded by the"Experimental Exploration of Active Faults in Urban Areas(20041138)"project of the National Development and Reform Commission of China
文摘This paper reviews the history and progress of research on active tectonics in China and overseas.By giving a brief introduction on the history of active tectonic research in China and other countries,the paper sums up the process and development of quantitative investigation of active tectonics since the 1980s.The focus is on the main efforts and progress made in China on certain aspects of research,such as basic surveys and applied investigation of active tectonics,the study of theories related to regional active tectonics and their kinematics and geodynamics,surveys on coupling relations between deep and shallow structures,active fault surveys and prospecting and seismic hazard assessment in urban areas,as well as the efforts made using Quaternary geochronology.Furthermore,the paper looks back on Chinese quantitative investigation of active tectonics in China and sums up cognitions derived from studies on the determination of several basic and measurable parameters of active tectonics.These parameters include the length of fault and fault segmentation,coseismic slip and cumulative slip,fault slip rate,the sequence of paleoearthquake events and the time elapsed since the most recent event.At the same time,efforts and progress made in China on assessing the long-term seismic potential for active faults and evaluating the risk from potential active fault movement have been reviewed by summarizing research on developing theories,models,methods and the application of time-dependent seismic potential to probabilistic assessment,magnitude estimation for potential earthquakes on active faults,and the forecast of potential risk caused by active fault movement.Finally,in consideration of the realities and problems in the research of active tectonics in China,the authors put forward several suggestions for issues worthy of more attention for further investigation in the future.
基金Contribution number for research papers of Research Center of Exploration Geophysics,CEA: RCEG200701
文摘Study on fault activity is a fundamental part of earthquake prediction and earthquake relief in big cities.In the active fault exploration in Zhengzhou,the spatial distribution,geological features and activity of the Huayuankou fault,the Shangjie fault and the Xushui fault were determined using the seismic prospecting method.New understanding about the characteristics of the faults was gained.This provides reliable basic data for future earthquake forecast and earthquake relief work in Zhengzhou.In addition,we proposed some ways to identify fault activity through analyzing the characteristics of the activity of a fault and raised an effective method for exploring active faults in big cities and exploring concealed faults in regions covered with thick overburdens.
基金National Natural Science Foundation of China(No.10504020,10874110)Shanghai Leading Academic Discipline Project,China(No.S30108)Science and Technology Commission of Shanghai Municipality,China(No.08DZ2231100)
文摘Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi Lamb wave modes are mostly based on various timefrequency methods such as Wigner-Ville distribution, shorttime Fourier transform, and recently explored wavelet transform(WT). Frankly speaking, uses of these signal processing methods improve the accuracy of the arrival time extraction to a great extent relative to directly extract arrival times in time-domain from Lamb waveforms. Hilbert-Huang transform(HHT) is also an efficient way for analyzing and processing non-stationary signals. The resolving power of time and frequency is restricted from Heisenberg principle in wavelet analysis, while in HHT, the time resolving power is precise and steady, and frequency resolving power is adaptive according to signal intrinsic characteristics. Conclusion can be made that the HI-IT method is more adaptive than WT anal;/sis in ~.!~M~ zing non-stationary signals. Based on the abo~, ~tiaf method is attempted to extract arrival times from Lamb waveforms in this paper. The Lamb wave tomography images generated with arrival times from HHT method were compared with those of WT. The results show that the new method improves the quality of tomography image, which demonstrates the applicability of HHT method in extracting arrival times of Lamb waves.
基金supported by National Natural Science Foundation of China (Grant Nos. U0933006, 41006028)South China Sea Institute of Oceanology,Chinese Academy of Sciences (Grant No. SQ200911)Chinese Academy of Sciences (Grant No. 1731005933)
文摘Later earthquake-sourced PmP phases have the potential to significantly improve ray coverage and resolution of crustal tomography methods,as their trajectories are quite different from those of shallower P phases.This paper analyzes the characteristics of later PmP arrival times from earthquakes with different focal depths.The results show that PmP arrival time differences from earthquakes at a range of focal depths are gradually lowered with increasing offset.We found that where the first recorded P-wave phase was the intra-crustal refraction phase(Pg),the differences in arrival time between Pg and PmP phases decreased with increasing focal depth at an offset of less than 120 km.Where the first P-wave phase is the upper mantle refraction phase(Pn),the difference in arrival times between Pn and PmP phases became larger with an increase in focal depth at an offset of more than 150 km.A total of 394 PmP phases and 3356 first P phases were picked from seismograms in the active volcanic area of northeastern Japan,according to the characteristics of calculated arrival times,amplitudes and particle motions.These were used to investigate the role of PmP phases in crustal tomography beneath an active volcanic region.Results of the detailed resolution analysis show that the addition of PmP data can improve significantly the resolution of the lower crustal structure in tomographic images.After the PmP data were included in the tomographic inversion,the path of upwelling magma,along which a series of low-frequency microearthquakes is clearly distributed,was better imaged.These results suggest that the PmP phase has an important role in detailed crustal tomography.