为控制速变服务网络(Fast Flux Service Network,FFSN)对恶意程序的隐藏,在研究已有FFSN检测方法的基础上,根据FFSN的本质特征,提出相应的检测方法:采用被动方法提取网络域名的响应延迟时间,根据合法域名响应延迟时间的自相似性及与FFS...为控制速变服务网络(Fast Flux Service Network,FFSN)对恶意程序的隐藏,在研究已有FFSN检测方法的基础上,根据FFSN的本质特征,提出相应的检测方法:采用被动方法提取网络域名的响应延迟时间,根据合法域名响应延迟时间的自相似性及与FFSN响应延迟时间的差异,使用基于Hurst参数的方差-时间图(Variance-Time Plots,VTP)分析法检测FFSN;为避免网络误报,对于疑似FFSN采用主动方法进行速变属性判断,以确认FFSN的存在,给出了算法流程和序列构建方法。实验验证结果表明,基于Hurst参数的FFSN检测法不仅能实时检测FFSN的存在,还能给出具体的FFSN域名,快速有效,达到预期目标。展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit...Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.展开更多
In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and...In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system.展开更多
Based on the analysis of the satellite DCB data estimated by our method and the Center for Orbit Determination in Europe(CODE)from 1999 to 2011,the features of the temporal variation of differential code biases(DCB)ar...Based on the analysis of the satellite DCB data estimated by our method and the Center for Orbit Determination in Europe(CODE)from 1999 to 2011,the features of the temporal variation of differential code biases(DCB)are studied.Summarily,there are three types of variations in DCB on different time scales.The first one is the day-to-day variation that exhibits more obviously in solar maximum years.The second one is the variation with about one year periodic variation that behaves more obviously from 1999 to 2004.The last one is the monotonously descending tendency from 1999 to 2010.Considering the basic ionospheric approximation in DCB estimation method,the features of the variability of the ionospheric morphology from 1999to 2010 are also displayed based on the ionospheric characteristic parameters.It can be concluded that the day-to-day and annual variation of the estimated global positioning system(GPS).DCB is related to the ionospheric variability.The variation of DCBs on solar cycle time scale includes the real hardware DCBs and pseudo-DCBs induced by ionospheric variation.No doubt,these kinds of"pseudo"variations of DCB will affect the precision of ionospheric total electron content(TEC)derived from the GPS data.In addition,this study is helpful for evaluating the influence of ionospheric weather on TEC derivation and is also useful for developing one estimation method of DCB with more stability and precision through introducing a more practical ionospheric model.展开更多
文摘为控制速变服务网络(Fast Flux Service Network,FFSN)对恶意程序的隐藏,在研究已有FFSN检测方法的基础上,根据FFSN的本质特征,提出相应的检测方法:采用被动方法提取网络域名的响应延迟时间,根据合法域名响应延迟时间的自相似性及与FFSN响应延迟时间的差异,使用基于Hurst参数的方差-时间图(Variance-Time Plots,VTP)分析法检测FFSN;为避免网络误报,对于疑似FFSN采用主动方法进行速变属性判断,以确认FFSN的存在,给出了算法流程和序列构建方法。实验验证结果表明,基于Hurst参数的FFSN检测法不仅能实时检测FFSN的存在,还能给出具体的FFSN域名,快速有效,达到预期目标。
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project(20090162120084)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(08JJ4014)supported by the Natural Science Foundation of Hunan Province,China
文摘Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.
文摘In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system.
基金supported by the National Natural Science Foundation of China(41274156 and 41174134)National Important Basic Research Project of China(Grant No.2011CB811405)
文摘Based on the analysis of the satellite DCB data estimated by our method and the Center for Orbit Determination in Europe(CODE)from 1999 to 2011,the features of the temporal variation of differential code biases(DCB)are studied.Summarily,there are three types of variations in DCB on different time scales.The first one is the day-to-day variation that exhibits more obviously in solar maximum years.The second one is the variation with about one year periodic variation that behaves more obviously from 1999 to 2004.The last one is the monotonously descending tendency from 1999 to 2010.Considering the basic ionospheric approximation in DCB estimation method,the features of the variability of the ionospheric morphology from 1999to 2010 are also displayed based on the ionospheric characteristic parameters.It can be concluded that the day-to-day and annual variation of the estimated global positioning system(GPS).DCB is related to the ionospheric variability.The variation of DCBs on solar cycle time scale includes the real hardware DCBs and pseudo-DCBs induced by ionospheric variation.No doubt,these kinds of"pseudo"variations of DCB will affect the precision of ionospheric total electron content(TEC)derived from the GPS data.In addition,this study is helpful for evaluating the influence of ionospheric weather on TEC derivation and is also useful for developing one estimation method of DCB with more stability and precision through introducing a more practical ionospheric model.