A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modelin...A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modeling is performed and the environment is divided into a set of grids or nodes. Then two time-based features of time interval and time cost are presented. The time intervals for each grid are built, during each interval the condition of the grid remains stable, and a time cost of passing through the grid is defined and assigned to each interval. Furthermore, the weight is introduced for taking both time and distance into consideration, and thus a sequence of multiscale paths with total time cost can be achieved. Experimental results show that the proposed method can handle the complex dynamic environment, obtain the global time optimal path and has the potential to be applied to the autonomous robot navigation and traffic environment.展开更多
Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused b...Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.展开更多
基金Supported by the National Natural Science Foundation of China(No.61100143,No.61370128)the Program for New Century Excellent Talents in University of the Ministry of Education of China(NCET-13-0659)Beijing Higher Education Young Elite Teacher Project(YETP0583)
文摘A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modeling is performed and the environment is divided into a set of grids or nodes. Then two time-based features of time interval and time cost are presented. The time intervals for each grid are built, during each interval the condition of the grid remains stable, and a time cost of passing through the grid is defined and assigned to each interval. Furthermore, the weight is introduced for taking both time and distance into consideration, and thus a sequence of multiscale paths with total time cost can be achieved. Experimental results show that the proposed method can handle the complex dynamic environment, obtain the global time optimal path and has the potential to be applied to the autonomous robot navigation and traffic environment.
基金Projects(72071202,71671184)supported by the National Natural Science Foundation of ChinaProject(22YJCZH144)supported by Humanities and Social Sciences Youth Foundation,Ministry of Education of China+3 种基金Project(2022M712680)supported by Postdoctoral Research Foundation of ChinaProject(22KJB110027)supported by Natural Science Foundation of Colleges and Universities in Jiangsu Province,ChinaProject(D2019046)supported by Initiation Foundation of Xuzhou Medical University,ChinaProject(2021SJA1079)supported by General Project of Philosophy and Social Science Research in Jiangsu Universities,China。
文摘Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.