期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力模型的多传感器人类活动识别 被引量:9
1
作者 王金甲 周雅倩 郝智 《计量学报》 CSCD 北大核心 2019年第6期958-969,共12页
深度循环神经网络适用于处理时间序列数据,然而循环神经网络特征提取能力差,时间依赖关系挖掘不足。针对此问题,提出了3种注意力机制和长短时记忆(LSTM)神经网络结合的模型用于人类活动识别问题,并研究了3种注意力机制在不同数据集上单... 深度循环神经网络适用于处理时间序列数据,然而循环神经网络特征提取能力差,时间依赖关系挖掘不足。针对此问题,提出了3种注意力机制和长短时记忆(LSTM)神经网络结合的模型用于人类活动识别问题,并研究了3种注意力机制在不同数据集上单独及配合使用时对模型精度的影响。对于UCI_HAR数据集,3种注意力LSTM模型准确率分别为94.13%、95.15%和94.81%,高于LSTM模型识别准确率93.2%。此外,针对人类活动识别的传感器时间序列数据的标签特点,提出将时间段分类任务转化为分割任务,设计了2个基于分割任务的注意力门控循环单元(GRU)神经网络模型,Bahdanau注意力GRU模型在Skoda数据集和机会(Oppor)数据集准确率为84.61%和89.54%,高于基准UNet模型的70.40%和88.51%。 展开更多
关键词 计量学 人类活动识别 长短时记忆神经网络 注意力机制 时间段分类 分割任务
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部