A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler...A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.展开更多
In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1 + t)- 3/4 and the...In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1 + t)- 3/4 and the error of difference between non-Newtonian fluid and linear equation is also investigated. The findings are mainly based on the classic Fourier splitting methods.展开更多
On the basis of Lie group theory,(1 + N)-dimensional time-fractional partial differential equations are studied and the expression of η_α~0 is given. As applications, two special forms of nonlinear time-fractional d...On the basis of Lie group theory,(1 + N)-dimensional time-fractional partial differential equations are studied and the expression of η_α~0 is given. As applications, two special forms of nonlinear time-fractional diffusionconvection equations are investigated by Lie group analysis method. Then the equations are reduced into fractional ordinary differential equations under group transformations. Therefore, the invariant solutions and some exact solutions are obtained.展开更多
基金Supported by the National Natural Science Foundation of China(51406031)
文摘A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.
文摘In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1 + t)- 3/4 and the error of difference between non-Newtonian fluid and linear equation is also investigated. The findings are mainly based on the classic Fourier splitting methods.
基金Supported by the Natural Science Foundation of China under Grant Nos.11371287 and 61663043
文摘On the basis of Lie group theory,(1 + N)-dimensional time-fractional partial differential equations are studied and the expression of η_α~0 is given. As applications, two special forms of nonlinear time-fractional diffusionconvection equations are investigated by Lie group analysis method. Then the equations are reduced into fractional ordinary differential equations under group transformations. Therefore, the invariant solutions and some exact solutions are obtained.