期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于用户关注度以及时间监督的任务分发
1
作者 张力 张书奎 +5 位作者 刘海 张洋 陶冶 龙浩 于淳清 祝启鼎 《计算机研究与发展》 EI CSCD 北大核心 2022年第4期813-825,共13页
在群智感知器网络中,如何在限定时间内完成发布者指定的感知任务,是移动群智感知任务分发面临的一个重要问题.针对该问题,为了使感知用户间密切协作,并及时将执行感知任务反馈给发送者,提出一种基于用户关注度与时间监督的任务分发(task... 在群智感知器网络中,如何在限定时间内完成发布者指定的感知任务,是移动群智感知任务分发面临的一个重要问题.针对该问题,为了使感知用户间密切协作,并及时将执行感知任务反馈给发送者,提出一种基于用户关注度与时间监督的任务分发(task distribution with user attention and time supervision,TDUATS)算法.该算法首先提出了用户间关注度,执行任务的起始监督、过程监督、完成监督等概念,然后通过分析执行感知任务的用户间关联关系,建立用户间关注度模型,对执行任务的过程进行监督,在此基础上对感知任务进行分发.实验结果表明,该算法不仅可在限定时间内完成感知任务,而且还可以监督任务执行的过程;有利于发布者及时了解任务的执行情况,对提高任务执行的满意度起到了很好的促进作用;同时,与对比算法相比较,也有较好的性能表现. 展开更多
关键词 移动感知器网络 感知任务 用户关注度 时间监督 任务分发
下载PDF
干部监督三忌
2
作者 洛长双 孙晖 《政工学刊》 2003年第1期43-43,共1页
随着依法治军工作逐步深入和广大官兵民主意识的增强,各级党委和相关职能部门在干部监督方面做了大量工作,也取得了较为明显的效果。但从干部出问题的统计数字看,多数是通过群众举报或从其他案件上带出来而查处落实的,而通过组织渠... 随着依法治军工作逐步深入和广大官兵民主意识的增强,各级党委和相关职能部门在干部监督方面做了大量工作,也取得了较为明显的效果。但从干部出问题的统计数字看,多数是通过群众举报或从其他案件上带出来而查处落实的,而通过组织渠道掌握和揭露的却十分有限。毋庸讳言,监督并没有成为发现问题、解决问题最强有力的支撑点。原因固然是多方面的,但其中最重要的一条就是,干部监督中存在着大量的空挡和盲区。 展开更多
关键词 军事 领导干部 监督制度 监督对象 监督时间
下载PDF
关于立体式全程环卫监督体系的探索
3
作者 朱玉红 《中国城市环境卫生》 2012年第3期17-20,共4页
监督的目的是预防和纠正失误,环卫监督是为了规范环卫作业,规范工作人员行为,防范违法违规现象发生。本文通过实际经验为例,探讨了一种行之有效的覆盖环卫行业内外,贯穿环卫作业前.中,后的空间立体式、时间全程式监督体系,对环... 监督的目的是预防和纠正失误,环卫监督是为了规范环卫作业,规范工作人员行为,防范违法违规现象发生。本文通过实际经验为例,探讨了一种行之有效的覆盖环卫行业内外,贯穿环卫作业前.中,后的空间立体式、时间全程式监督体系,对环卫监督起到一定的参考借鉴作用。 展开更多
关键词 监督空间立体式时间全程式监督体系
下载PDF
事后监督综合处理系统的设计与实现
4
作者 张德顺 《中国金融电脑》 1999年第6期18-21,共4页
关键词 事后监督 综合处理系统 计算机 数据处理 系统服务器 图文信息 功能模块 业务类型 光盘阵列 监督时间
下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
5
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 Adaptive soft sensor Just-in-time learning Supervised local and non-local structure preserving projections Locality preserving projections Database monitoring
下载PDF
Identifying Similar Operation Scenes for Busy Area Sector Dynamic Management 被引量:2
6
作者 HU Minghua ZHANG Xuan +2 位作者 YUAN Ligang CHEN Haiyan GE Jiaming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期615-629,共15页
Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical bus... Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support. 展开更多
关键词 air traffic similar scenes unsupervised clustering dynamic operation time series similarity measure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部