To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-ti...To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-time Markov chain is used to model the signal sparsity level and analyze the transition between different states.According to the current state,the signal sparsity level state in the next sampling period and its probability are predicted.Furthermore,based on the prediction results,a dynamic control approach is proposed to find out the optimal sampling rate with the aim of maximizing the expected reward which considers both the energy consumption and the recovery accuracy.The proposed approach can balance the tradeoff between the energy consumption and the recovery accuracy.Simulation results show that the proposed dynamic control approach can significantly improve the sampling performance compared with the existing approach.展开更多
Background P-wave dispersion (PWD), a measure of heterogeneity of atrial refractoriness, is defined as the difference between the maximum and minimum P-wave duration. In patients with severe aortic stenosis (AS), ...Background P-wave dispersion (PWD), a measure of heterogeneity of atrial refractoriness, is defined as the difference between the maximum and minimum P-wave duration. In patients with severe aortic stenosis (AS), P-wave duration and PWD were shown to be increased, indicating atrial electrical remodeling. However, the effect of transcatheter aortic valve replacement (TAVR) on P-wave morphology has not been established yet. The aim of this study is to assess the short and long-term effects of TAVR with two types of bioprosthetic valves on P-wave duration and PWD in association with left atrial (LA) size. Methods Fifty-two (36 female) eligible patients in sinus rhythm who underwent transfemoral TAVR between June 01, 2012 and July 31, 2014 with either a Medtronic CoreValve (MCV) (n = 32) or an Edwards SAPIEN XT Valve (n = 20) were enrolled. Standard 12-lead electrocardiogram and echocardiographic evaluations were per- formed pre-procedurally, post-TAVR day one and 6 months post-TAVR. P-wave duration and PWD were measured and correlation analyses with echocardiographic variables were performed. Results P-wave duration and PWD were significantly decreased on post-TAVR day one (P 〈 0.05). They continued to decrease during the six month follow-up period, but were not significantly different from short-term values (P 〉 0.05). The decrease of LA diameter was found significant at the sixth-months of follow-up (P 〈 0.05). These changes were independent from the types of bioprosthetic valves implanted (P 〉 0.05). A positive correlation was detected between minimum P-wave duration and maximum aortic valve gradients at post-TAVR day one (r = 0.297, P = 0.032). Conclusions P-wave duration and PWD were significantly reduced early after TAVR indicating early reverse atrial electrical remodeling. Moreover, structural reverse remodeling of atrium was detected at the 6-months of follow-up. The effects of two types of bioprosthetic valves on atrial remodeling were similar.展开更多
A simulation of stratification and penetration was performed over a range of structural parameters that included screen width, aperture size, inclination angle, and wire diameter. The discrete element method (DEM) w...A simulation of stratification and penetration was performed over a range of structural parameters that included screen width, aperture size, inclination angle, and wire diameter. The discrete element method (DEM) was used for the simulations. The terms stratification and penetration are defined and the change in fine panicle concentration is discussed. Mathematical models relating fine particle ratio to time are established using the least squares method. The effect of structural parameters on fine panicle ratio is analyzed. Stratification and penetration rate are discussed by considering the time derivative of the fine panicle ratio. The conclusions are: an increase in inclination or wire diameter has a positive effect on par- ticle stratifying; The optimal screen width is 40 mm for panicle stratification; The inclination angle has a negative effect on the penetration; The effect of wire diameter and screen width on the penetration rate is negligible.展开更多
The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volu...The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.展开更多
A first principal modeling of the gasification of a char particle is performed using single step mechanism. The char particle is considered to be spherical in shape and only the physical and chemical properties can ch...A first principal modeling of the gasification of a char particle is performed using single step mechanism. The char particle is considered to be spherical in shape and only the physical and chemical properties can change in the radial direction. The carbon dioxide is used as the gasification agent that reacts with the char and form carbon monoxide. The presence of both solid and gaseous phase species makes the reaction heterogeneous. The char particle is considered with varying porosity that also allows the change in the surface area of the particle. A time invariant temperature and pressure profile is used at which the Arrhenius rate constant and diffusion is calculated. The mass conservation of model results in the form of two coupled partial differential and one ordinary differential equation. The equations are solved with a set of initial and boundary conditions using the bulk species concentration at the particle surface. A second order accurate central differencing scheme is used to discretize space while backward differencing is used to discretize time. Finally, the results are presented for the concentration distribution of CO and CO2 in radial direction with respect to time. It shows that, maximum concentration of CO is present at the center of the particle while the concentration gradient becomes higher near the particle surface. The nonlinear concentration trend due to the diffusion is effectively captured. The results show that, completed conversion of char depend upon the time provided for the reaction which can be reduced by decreasing the size of particle or increasing the reaction temperature. The sensitivity study of temperature and initial porosity also performed and showed that temperature has high impact on char conversion as compare to initial porosity.展开更多
The consensus problem of a linear discrete-time multi- agent system with directed communication topologies was investigated. A protocol was designed to solve consensus with an improved convergence speed achieved by de...The consensus problem of a linear discrete-time multi- agent system with directed communication topologies was investigated. A protocol was designed to solve consensus with an improved convergence speed achieved by designing protocol gains. The clo6ed-loop multi.agent system converged to an expected type of consensus function, which was divided into four types: zero, non- zero constant vector, bounded trajectories, and ramp trajectories. An algorithm was further provided to construct the protocol gains, which were determined in terms of a classical pole placement algorithm and a modified algebraic Riccati equation. Finally, an example to illustrate the effectiveness of theoretical results was presented.展开更多
This paper considers a discrete-time Geo/G/1 queue under the Min(N, D)-policy in which the idle server resumes its service if either N customers accumulate in the system or the total backlog of the service times of ...This paper considers a discrete-time Geo/G/1 queue under the Min(N, D)-policy in which the idle server resumes its service if either N customers accumulate in the system or the total backlog of the service times of the waiting customers exceeds D, whichever occurs first (Min(N, D)-policy). By using renewal process theory and total probability decomposition technique, the authors study the transient and equilibrium properties of the queue length from the beginning of the arbitrary initial state, and obtain both the recursive expression of the z-transformation of tile transient queue length distribution and the recursive formula for calculating the steady state queue length at arbitrary time epoch n+. Meanwhile, the authors obtain the explicit expressions of the additional queue length distribution, l^trthermore, the important relations between the steady state queue length distributions at different time epochs n , n and n+ are also reported. Finally, the authors give numerical examples to illustrate the effect of system parameters on the steady state queue length distribution, and also show from numerical results that the expressions of the steady state queue length distribution is important in the system capacity design.展开更多
Time reversal in quantum or classical systems described by an Hermitian Hamiltonian is a physically allowed process, which requires in principle inverting the sign of the Hamiltonian. Here we consider the problem of t...Time reversal in quantum or classical systems described by an Hermitian Hamiltonian is a physically allowed process, which requires in principle inverting the sign of the Hamiltonian. Here we consider the problem of time reversal of a subsystem of discrete states coupled to an external environment characterized by a continuum of states, into which they generally decay. It is shown that, by flipping the discrete-continuum coupling from an Hermitian to a non-Hermitian interaction, thus resulting in a non unitary dynamics, time reversal of the subsystem of discrete states can be achieved, while the continuum of states is not reversed. Exact time reversal requires frequency degeneracy of the discrete states,or large frequency mismatch among the discrete states as compared to the strength of indirect coupling mediated by the continuum. Interestingly, periodic and frequent switch of the discrete-continuum coupling results in a frozen dynamics of the subsystem of discrete states.展开更多
基金Innovation Funds for Outstanding Graduate Students in School of Information and Communication Engineering in BUPTthe National Natural Science Foundation of China(No.61001115, 61271182)
文摘To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-time Markov chain is used to model the signal sparsity level and analyze the transition between different states.According to the current state,the signal sparsity level state in the next sampling period and its probability are predicted.Furthermore,based on the prediction results,a dynamic control approach is proposed to find out the optimal sampling rate with the aim of maximizing the expected reward which considers both the energy consumption and the recovery accuracy.The proposed approach can balance the tradeoff between the energy consumption and the recovery accuracy.Simulation results show that the proposed dynamic control approach can significantly improve the sampling performance compared with the existing approach.
文摘Background P-wave dispersion (PWD), a measure of heterogeneity of atrial refractoriness, is defined as the difference between the maximum and minimum P-wave duration. In patients with severe aortic stenosis (AS), P-wave duration and PWD were shown to be increased, indicating atrial electrical remodeling. However, the effect of transcatheter aortic valve replacement (TAVR) on P-wave morphology has not been established yet. The aim of this study is to assess the short and long-term effects of TAVR with two types of bioprosthetic valves on P-wave duration and PWD in association with left atrial (LA) size. Methods Fifty-two (36 female) eligible patients in sinus rhythm who underwent transfemoral TAVR between June 01, 2012 and July 31, 2014 with either a Medtronic CoreValve (MCV) (n = 32) or an Edwards SAPIEN XT Valve (n = 20) were enrolled. Standard 12-lead electrocardiogram and echocardiographic evaluations were per- formed pre-procedurally, post-TAVR day one and 6 months post-TAVR. P-wave duration and PWD were measured and correlation analyses with echocardiographic variables were performed. Results P-wave duration and PWD were significantly decreased on post-TAVR day one (P 〈 0.05). They continued to decrease during the six month follow-up period, but were not significantly different from short-term values (P 〉 0.05). The decrease of LA diameter was found significant at the sixth-months of follow-up (P 〈 0.05). These changes were independent from the types of bioprosthetic valves implanted (P 〉 0.05). A positive correlation was detected between minimum P-wave duration and maximum aortic valve gradients at post-TAVR day one (r = 0.297, P = 0.032). Conclusions P-wave duration and PWD were significantly reduced early after TAVR indicating early reverse atrial electrical remodeling. Moreover, structural reverse remodeling of atrium was detected at the 6-months of follow-up. The effects of two types of bioprosthetic valves on atrial remodeling were similar.
基金the Special Topic Fund of Key Science and Technology of Fujian Province (No. 2006HZ0002-2) for the financial support
文摘A simulation of stratification and penetration was performed over a range of structural parameters that included screen width, aperture size, inclination angle, and wire diameter. The discrete element method (DEM) was used for the simulations. The terms stratification and penetration are defined and the change in fine panicle concentration is discussed. Mathematical models relating fine particle ratio to time are established using the least squares method. The effect of structural parameters on fine panicle ratio is analyzed. Stratification and penetration rate are discussed by considering the time derivative of the fine panicle ratio. The conclusions are: an increase in inclination or wire diameter has a positive effect on par- ticle stratifying; The optimal screen width is 40 mm for panicle stratification; The inclination angle has a negative effect on the penetration; The effect of wire diameter and screen width on the penetration rate is negligible.
基金supported by the European project ADIGMA on the development of innovative solution algorithms for aerodynamic simulations,NSFC grant 10671091,SRF for ROCS,SEM and JSNSF BK2006511.
文摘The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.
文摘A first principal modeling of the gasification of a char particle is performed using single step mechanism. The char particle is considered to be spherical in shape and only the physical and chemical properties can change in the radial direction. The carbon dioxide is used as the gasification agent that reacts with the char and form carbon monoxide. The presence of both solid and gaseous phase species makes the reaction heterogeneous. The char particle is considered with varying porosity that also allows the change in the surface area of the particle. A time invariant temperature and pressure profile is used at which the Arrhenius rate constant and diffusion is calculated. The mass conservation of model results in the form of two coupled partial differential and one ordinary differential equation. The equations are solved with a set of initial and boundary conditions using the bulk species concentration at the particle surface. A second order accurate central differencing scheme is used to discretize space while backward differencing is used to discretize time. Finally, the results are presented for the concentration distribution of CO and CO2 in radial direction with respect to time. It shows that, maximum concentration of CO is present at the center of the particle while the concentration gradient becomes higher near the particle surface. The nonlinear concentration trend due to the diffusion is effectively captured. The results show that, completed conversion of char depend upon the time provided for the reaction which can be reduced by decreasing the size of particle or increasing the reaction temperature. The sensitivity study of temperature and initial porosity also performed and showed that temperature has high impact on char conversion as compare to initial porosity.
基金Natural Science Foundation of Shandong Province,China(No.ZR2010FZ001)
文摘The consensus problem of a linear discrete-time multi- agent system with directed communication topologies was investigated. A protocol was designed to solve consensus with an improved convergence speed achieved by designing protocol gains. The clo6ed-loop multi.agent system converged to an expected type of consensus function, which was divided into four types: zero, non- zero constant vector, bounded trajectories, and ramp trajectories. An algorithm was further provided to construct the protocol gains, which were determined in terms of a classical pole placement algorithm and a modified algebraic Riccati equation. Finally, an example to illustrate the effectiveness of theoretical results was presented.
基金supported by the National Natural Science Foundation of China under Grant Nos.71171138,71301111,71571127the Scientific Research Innovation&Application Foundation of Headmaster of Hexi University under Grant Nos.XZ2013-06,XZ2013-09
文摘This paper considers a discrete-time Geo/G/1 queue under the Min(N, D)-policy in which the idle server resumes its service if either N customers accumulate in the system or the total backlog of the service times of the waiting customers exceeds D, whichever occurs first (Min(N, D)-policy). By using renewal process theory and total probability decomposition technique, the authors study the transient and equilibrium properties of the queue length from the beginning of the arbitrary initial state, and obtain both the recursive expression of the z-transformation of tile transient queue length distribution and the recursive formula for calculating the steady state queue length at arbitrary time epoch n+. Meanwhile, the authors obtain the explicit expressions of the additional queue length distribution, l^trthermore, the important relations between the steady state queue length distributions at different time epochs n , n and n+ are also reported. Finally, the authors give numerical examples to illustrate the effect of system parameters on the steady state queue length distribution, and also show from numerical results that the expressions of the steady state queue length distribution is important in the system capacity design.
文摘Time reversal in quantum or classical systems described by an Hermitian Hamiltonian is a physically allowed process, which requires in principle inverting the sign of the Hamiltonian. Here we consider the problem of time reversal of a subsystem of discrete states coupled to an external environment characterized by a continuum of states, into which they generally decay. It is shown that, by flipping the discrete-continuum coupling from an Hermitian to a non-Hermitian interaction, thus resulting in a non unitary dynamics, time reversal of the subsystem of discrete states can be achieved, while the continuum of states is not reversed. Exact time reversal requires frequency degeneracy of the discrete states,or large frequency mismatch among the discrete states as compared to the strength of indirect coupling mediated by the continuum. Interestingly, periodic and frequent switch of the discrete-continuum coupling results in a frozen dynamics of the subsystem of discrete states.