According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput...According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.展开更多
DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In ord...DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.展开更多
This paper presents an adaptive linearly constrained second-order least mean-square (LC-SOLMS) algorithm for interference cancellation in space-time block coded MIMO systems with fading channels. By taking mean-output...This paper presents an adaptive linearly constrained second-order least mean-square (LC-SOLMS) algorithm for interference cancellation in space-time block coded MIMO systems with fading channels. By taking mean-output-energy (MOE) optimization method, an adaptive linear detection algorithm was built up, which can suppress multiple access interference and noise. Simulation results illustrate that the proposed algorithm has great interference cancellation capability and faster convergence performance.展开更多
In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing...In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10.In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero.Teleparallel Killing vector fields in this case are exactly the same as in general relativity.In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation.Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields.展开更多
We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and th...We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and the space time manifold, and the latter's physical structure, whether it is Continuous or Discrete. In the proposed model the properties of the particles are classical in the sense of general relativity, whereas their quantum properties are arises due to the experiments.展开更多
Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject t...Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject to the Kubo-Martin-Schwinger (KMS) condition. Consequently, in the interior of the KMS strip, i.e. from the scale B = 0 to the scale B = lplanck, the fourth coordinate g44 must be considered as complex, the two real poles being 6 = 0 and B = lplanck. This means that within the limits of the KMS strip, the Lorentzian and the Euclidean metric are in a 'quantum superposition state' (or coupled), this entailing a 'unification' (or coupling) between the topological (Euclidean) and the physical (Lorentzian) states of space-time.展开更多
We formulate a Lagrange method for continuous-time stochastic optimization in an appropriate normed space by using a proper stochastic process as the Lagrange multiplier.The obtained optimality conditions are applied ...We formulate a Lagrange method for continuous-time stochastic optimization in an appropriate normed space by using a proper stochastic process as the Lagrange multiplier.The obtained optimality conditions are applied to different types of problems.Some examples selected from control theory and economic theory are studied to test and illustrate the potential applications of the method.展开更多
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.
文摘DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.
基金the National Natural Science Foundation of China (Grant No.60172018)
文摘This paper presents an adaptive linearly constrained second-order least mean-square (LC-SOLMS) algorithm for interference cancellation in space-time block coded MIMO systems with fading channels. By taking mean-output-energy (MOE) optimization method, an adaptive linear detection algorithm was built up, which can suppress multiple access interference and noise. Simulation results illustrate that the proposed algorithm has great interference cancellation capability and faster convergence performance.
文摘In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10.In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero.Teleparallel Killing vector fields in this case are exactly the same as in general relativity.In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation.Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields.
文摘We propose a novel model, based on two postulates, which provide new perspective on the fundamental forces using special and general relativity concepts. Many studies address the relations between the particles and the space time manifold, and the latter's physical structure, whether it is Continuous or Discrete. In the proposed model the properties of the particles are classical in the sense of general relativity, whereas their quantum properties are arises due to the experiments.
文摘Considering the expected thermal equilibrium characterizing the physics at the Planck scale, it is here stated, for the first time, that, as a system, the space-time at the Planck scale must be considered as subject to the Kubo-Martin-Schwinger (KMS) condition. Consequently, in the interior of the KMS strip, i.e. from the scale B = 0 to the scale B = lplanck, the fourth coordinate g44 must be considered as complex, the two real poles being 6 = 0 and B = lplanck. This means that within the limits of the KMS strip, the Lorentzian and the Euclidean metric are in a 'quantum superposition state' (or coupled), this entailing a 'unification' (or coupling) between the topological (Euclidean) and the physical (Lorentzian) states of space-time.
基金supported by National Natural Science Foundation of China (Grant No.11001029)the National Basic Research Program of China (973 Program) (Grant No. 2007CB814902)+1 种基金the Science Fund for Creative Research Groups (Grant No. 11021161)Key Laboratory of Random Complex Structures and Data Science (Grant No. 2008DP173182)
文摘We formulate a Lagrange method for continuous-time stochastic optimization in an appropriate normed space by using a proper stochastic process as the Lagrange multiplier.The obtained optimality conditions are applied to different types of problems.Some examples selected from control theory and economic theory are studied to test and illustrate the potential applications of the method.