Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to...Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.展开更多
In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rap...In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application.展开更多
The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location ...The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)The National Key R&D Program of China (No.2016YFB0800101)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (No.61602509)Henan Province Key Technologies R&D Program of China(No.172102210615)
文摘Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
基金Supported by the National Natural Science Foundation of China(No.51474217,41501562)the Open Fund Program of Henan Engineering Laboratory of Pollution Control and Coal Chemical Resources Comprehensive Utilization(No.502002-B07,502002-A04)
文摘In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application.
基金supported by the Joint Civil Aviation Fund of National Natural Science Foundation of China(Nos.U1533108 and U1233112)
文摘The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.