期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于事件时间论元抽取的文档级时序抽取方法研究
1
作者 肖彬 郁兴腾 戴诗伟 《北方工业大学学报》 2024年第3期84-92,共9页
事件时序关系识别任务属于关系抽取领域的一个分支,近年来受到越来越多的关注。目前,关于章级事件时序关系抽取的研究在现有神经网络方法中尚未得到充分深入探讨。因此,本文提出一种基于篇章事件时序关系矩阵的方法,利用语言学中的时间... 事件时序关系识别任务属于关系抽取领域的一个分支,近年来受到越来越多的关注。目前,关于章级事件时序关系抽取的研究在现有神经网络方法中尚未得到充分深入探讨。因此,本文提出一种基于篇章事件时序关系矩阵的方法,利用语言学中的时间论元理论来指导模型抽取效果;通过修改预训练阶段的词嵌入,将句子的时态、体态和时间副词作为额外信息融入事件触发词的词嵌入表达中;同时,模型还利用了事件时间论元抽取任务进行辅助训练,从而构建了具有增强时间特征的文本表达。研究发现通过将事件时间论元抽取任务融入模型训练过程,该模型在事件时序关系抽取任务上获得了比基线更好的效果。 展开更多
关键词 关系抽取 时序关系 事件时间论元 预训练 抽取矩阵
下载PDF
时间论元理论及其解释力分析 被引量:2
2
作者 陆志军 《外语学刊》 CSSCI 北大核心 2018年第4期12-17,共6页
Demirdache和Uribe—Etxebarria提出的时问论元理论将时态、体和时间副词统一分析为二元时空谓词(AFTER,WITHIN或BEFORE),该时空谓词能够将时间论元UT—T,EV—T或AST—T联结并排序为三种对应的时间关系(居后、包含或居前),从而... Demirdache和Uribe—Etxebarria提出的时问论元理论将时态、体和时间副词统一分析为二元时空谓词(AFTER,WITHIN或BEFORE),该时空谓词能够将时间论元UT—T,EV—T或AST—T联结并排序为三种对应的时间关系(居后、包含或居前),从而构建句法-语义同构性的时间词组结构。他们还依据时间论元概念进一步分析时间状语子句、宾语补足语子句、非根模态词等句法现象,形成系统性和解释性兼具的时间诠释理论框架,为时体领域开拓新的研究思路。 展开更多
关键词 时间论元 时空谓词 时态 时间副词
下载PDF
Shock Tube Measurement of Ethylene Ignition Delay Time and Molecular Collision Theory Analysis
3
作者 Xiao-he Xiong Yan-jun Ding +1 位作者 Shuo Shi Zhi-min Peng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第6期761-766,I0002,共7页
In this study, 75% and 96% argon diluent conditions were selected to determine the ig- nition delay time of stoichiometric mixture of C2Ha/O2/Ar within a range of pressures (1.3-:3.0 arm) and temperatures (1092-17... In this study, 75% and 96% argon diluent conditions were selected to determine the ig- nition delay time of stoichiometric mixture of C2Ha/O2/Ar within a range of pressures (1.3-:3.0 arm) and temperatures (1092-1743 K). Results showed a logarithmic linear rela- tionship of the ignition delay time with the reciprocal of temperatures. Under both two diluent conditions, ignition delay time decreased with increased temperature. By multiple linear regression analysis, the ignition delay correlation was deduced. According to this correlation, the calculated ignition delay time in 96% diluent was found to be nearly five times that in 75% diluent. To explain this discrepancy, the hard-sphere collision theory was adopted, and the collision numbers of ethylene to oxygen were calculated. The total collision numbers of ethylene to oxygen were 5.99×10^30 s^-1cm^-3 in 75% diluent and 1.53×10^29 s^-1cm^-3 in 96% diluent (about 40 times that in 75% diluent). According to the discrepancy between ignition delay time and collision numbers, viz. 5 times corresponds to 40 times, the steric factor can 展开更多
关键词 Shock tube ETHYLENE Ignition delay Molecule collision
下载PDF
Improved twin support vector machine 被引量:6
4
作者 TIAN YingJie JU XuChan +1 位作者 QI ZhiQuan SHI Yong 《Science China Mathematics》 SCIE 2014年第2期417-432,共16页
We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian ... We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian functions for the primal problems in the TWSVM,we get an improved dual formulation of TWSVM,then the resulted ITSVM algorithm overcomes the common drawbacks in the TWSVMs and inherits the essence of the standard SVMs.Firstly,ITSVM does not need to compute the large inverse matrices before training which is inevitable for the TWSVMs.Secondly,diferent from the TWSVMs,kernel trick can be applied directly to ITSVM for the nonlinear case,therefore nonlinear ITSVM is superior to nonlinear TWSVM theoretically.Thirdly,ITSVM can be solved efciently by the successive overrelaxation(SOR)technique or sequential minimization optimization(SMO)method,which makes it more suitable for large scale problems.We also prove that the standard SVM is the special case of ITSVM.Experimental results show the efciency of our method in both computation time and classification accuracy. 展开更多
关键词 support vector machine twin support vector machine nonparallel structural risk minimization CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部