The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper...The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper, a transparent double-sided anodic alumina membrane with ultra-thin aluminum substrate was fabricated with the three-step anodic oxidation method in the oxalic acid electrolyte. The characters such as the top-surface morphology, membrane thickness, and depth of nanopores of this three-layer (A1203-A1-A1203) sandwiched nano-structure were controllable through regulating the main anodic oxidation conditions, e.g., anodic oxidation time of various steps, coating remove process. The experiments data revealed that the aluminum substrate is exponential declined with the oxidation time when it was approximately reduced by a few micrometers. This new double-sided anodic alumina membrane can be used as the high-quality functional field emission materials and templates.展开更多
基金supported by the Major Research Plan of the National Nat-ural Science Foundation of China(Grant No.91123030)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)the National Natural Science Foundation of China(Grant No.61378083)
文摘The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper, a transparent double-sided anodic alumina membrane with ultra-thin aluminum substrate was fabricated with the three-step anodic oxidation method in the oxalic acid electrolyte. The characters such as the top-surface morphology, membrane thickness, and depth of nanopores of this three-layer (A1203-A1-A1203) sandwiched nano-structure were controllable through regulating the main anodic oxidation conditions, e.g., anodic oxidation time of various steps, coating remove process. The experiments data revealed that the aluminum substrate is exponential declined with the oxidation time when it was approximately reduced by a few micrometers. This new double-sided anodic alumina membrane can be used as the high-quality functional field emission materials and templates.