Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OF...Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OFMPC, an Open Flow based Multi Path Cooperation framework, to decrease FCT and increase the network throughput. OFMPC partitions the end-to-end transmission paths into two classes, which are low delay paths(LDPs) and high throughput paths(HTPs), respectively. Short flows are assigned to LDPs to avoid long queueing delay, while long flows are assigned to HTPs to guarantee their throughput. Meanwhile, a dynamic scheduling mechanism is presented to improve network efficiency. We evaluate OFMPC in Mininet emulator and a testbed, and the experimental results show that OFMPC can effectively decrease FCT. Besides, OFMPC also increases the throughput up to more than 84% of bisection bandwidth.展开更多
Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in sea...Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8C12, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.展开更多
基金supported by the State Key Development Program for Basic Research of China under Grant No.2012CB315806the National Natural Science Foundation of China under Grant Nos.61103225 and 61379149+1 种基金Jiangsu Province Natural Science Foundation of China under Grant No.BK20140070Jiangsu Future Networks Innovation Institute Prospective Research Project on Future Networks under Grant No.BY2013095-1-06
文摘Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OFMPC, an Open Flow based Multi Path Cooperation framework, to decrease FCT and increase the network throughput. OFMPC partitions the end-to-end transmission paths into two classes, which are low delay paths(LDPs) and high throughput paths(HTPs), respectively. Short flows are assigned to LDPs to avoid long queueing delay, while long flows are assigned to HTPs to guarantee their throughput. Meanwhile, a dynamic scheduling mechanism is presented to improve network efficiency. We evaluate OFMPC in Mininet emulator and a testbed, and the experimental results show that OFMPC can effectively decrease FCT. Besides, OFMPC also increases the throughput up to more than 84% of bisection bandwidth.
基金Supported by the National Natural Science Foundation of China(No.41506098)the Post-Doctoral Fund of Zhejiang Province(No.BSH 1502160)+1 种基金the Open Fund Project of Key Laboratory of Marine Materials and Related Technologies of China Academy of Sciences(No.LMMT-KFKT-2014-008)the Ningbo Natural Science Foundation(No.2015A610016)
文摘Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8C12, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.