In this paper, two new interpolation algorithms lot CNC machining along curve^l tom pathes are proposed: a time-optimal interpolation algorithm under chord error, feedrate, and tangential acceleration bounds, and a g...In this paper, two new interpolation algorithms lot CNC machining along curve^l tom pathes are proposed: a time-optimal interpolation algorithm under chord error, feedrate, and tangential acceleration bounds, and a greedy interpolation algorithm under the chord error and tangential jerk bounds. The key idea is to reduce the chord error bound to a centripetal acceleration bound which leads to a velocity limit curve, called the chord error velocity limit curve. Then, the velocity planning is to find the proper velocity curve governed by the acceleration or jerk bounds '~under" the chord error velocity limit curve. For two types of simple tool pathes, explicit formulas for the velocity curve are given and the methods are implemented in commercial CNC controllers.展开更多
In this paper, evacuation experiments are carried out to study pedestrian movement behaviors in building bottleneck. An image processing method based on mean-shift algorithm is used to extract pedestrian movement traj...In this paper, evacuation experiments are carried out to study pedestrian movement behaviors in building bottleneck. An image processing method based on mean-shift algorithm is used to extract pedestrian movement trajectory. Based on the extracted trajectory, we analyze the microscopic movement characteristics of pedestrians such as lane formation, change of velocity and distance between two sequential pedestrians. A pedestrian lane is a group of pedestrians moving in a column. The lane formation is verified by the pedestrian trajectory and distribution of pedestrian’s lateral positions (x direction in the paper): lane number changes from one to two, three or even more with the increasing bottleneck width when pedestrians pass through the bottleneck. By analyzing the pedestrian movement behaviors in the same pedestrian lane, we find three typical movement modes in the bottleneck: time-lag acceleration, synchronous acceleration, and avoiding deceleration. Through analyzing the time intervals when successive pedestrians pass through the bottleneck, we find that most pedestrians adjust their velocities according to the distance to the forward pedestrians. Results also indicate that due to different cultures, pedestrians flux in China and Germany may have some differences besides their similarities.展开更多
基金supported by a National Key Basic Research Project of China under Grant No.2011CB302400the National Natural Science Foundation of China under Grant No.60821002
文摘In this paper, two new interpolation algorithms lot CNC machining along curve^l tom pathes are proposed: a time-optimal interpolation algorithm under chord error, feedrate, and tangential acceleration bounds, and a greedy interpolation algorithm under the chord error and tangential jerk bounds. The key idea is to reduce the chord error bound to a centripetal acceleration bound which leads to a velocity limit curve, called the chord error velocity limit curve. Then, the velocity planning is to find the proper velocity curve governed by the acceleration or jerk bounds '~under" the chord error velocity limit curve. For two types of simple tool pathes, explicit formulas for the velocity curve are given and the methods are implemented in commercial CNC controllers.
基金supported by the National Natural Science Foundation of China (Grant No. 91024025)the NCET Project (Grant No. 08-0518)
文摘In this paper, evacuation experiments are carried out to study pedestrian movement behaviors in building bottleneck. An image processing method based on mean-shift algorithm is used to extract pedestrian movement trajectory. Based on the extracted trajectory, we analyze the microscopic movement characteristics of pedestrians such as lane formation, change of velocity and distance between two sequential pedestrians. A pedestrian lane is a group of pedestrians moving in a column. The lane formation is verified by the pedestrian trajectory and distribution of pedestrian’s lateral positions (x direction in the paper): lane number changes from one to two, three or even more with the increasing bottleneck width when pedestrians pass through the bottleneck. By analyzing the pedestrian movement behaviors in the same pedestrian lane, we find three typical movement modes in the bottleneck: time-lag acceleration, synchronous acceleration, and avoiding deceleration. Through analyzing the time intervals when successive pedestrians pass through the bottleneck, we find that most pedestrians adjust their velocities according to the distance to the forward pedestrians. Results also indicate that due to different cultures, pedestrians flux in China and Germany may have some differences besides their similarities.