Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article i...Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.展开更多
This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies...This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies and joint aliasing frequencies-time delay phases in multi-signal situation is presentcd. Since the sum of time delay phases determined from the least squares estimation shows the characteristics of the corre- sponding parameters pairs, then the pairmatching method is conducted by combining it with estimated parameters mentioned above. Although the proposed method is computationally simpler than the conventional schemes, simulation results show that it can approach optimum estimation performance.展开更多
Using seismic data of about one year recorded by 18 broadband stations of ASCENT project, we obtained 2547 receiver func- tions in the northeastern Tibetan Plateau. The Moho depths under 14 stations were calculated by...Using seismic data of about one year recorded by 18 broadband stations of ASCENT project, we obtained 2547 receiver func- tions in the northeastern Tibetan Plateau. The Moho depths under 14 stations were calculated by applying the H-x domain search algorithm. The Moho depths under the stations with lower signal-noise ratio (SNR) were estimated by the time delay of the PS conversion. Results show that the Moho depth varies in a range of -40--60 kin. The Moho near the Haiyuan fault is vague, and its depth is larger than those on its two sides. In the Qinling-Qilian Block, the Moho becomes shallower gradually from west to east. To the east of 105~E, the average depth of the Moho is 45 km, whereas the west is 50 km or even deeper. Combining our results with surface wave research, we suggest a boundary between the Qinling and the Qilian Mountains at around 105~E. S wave velocities beneath 15 stations have been obtained through a linear inversion by using Crust2.0 as an ini- tial model, and the crustal thickness that was derived by H-x domain search algorithm was also taken into account. The results are very similar to the results of previous active source studies. The resulting figure indicates that low velocity layers devel- oped in the middle and lower crust beneath the transition zone of the Tibet Block and western Qinling, which may be related to regional faults and deep earth dynamics. The velocity of the middle and lower crust increases from the Songpan Block to the northeastern margin of Tibetan Plateau. Based on the velocity of the crust, the distribution of the low velocity zone and the composition of the curst (Poisson's ratio), we infer that the crust thickening results from the crust shortening along the direc- tion of compression.展开更多
This paper investigates the risk-sensitive fixed-point smoothing estimation for hnear omcrete-time systems with multiple time-delay measurements. The problem considered can be converted into an optimization one in ind...This paper investigates the risk-sensitive fixed-point smoothing estimation for hnear omcrete-time systems with multiple time-delay measurements. The problem considered can be converted into an optimization one in indefinite space. Then the risk-sensitive fixed-point smoother is obtained by solving the optimization problem via innovation analysis theory in indefinite space. Necessary and sufficient conditions guaranteeing the existence of the risk-sensitive smoother are also given when the risk-sensitive parameter is negative. Compared with the conventional approach, a significant advantage of presented approach is that it provides less computational cost.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(Grant No.51279033) and Natural Science Foundation of Heilongjiang Province, China(Grant No.F201346 )
文摘Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.
文摘This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies and joint aliasing frequencies-time delay phases in multi-signal situation is presentcd. Since the sum of time delay phases determined from the least squares estimation shows the characteristics of the corre- sponding parameters pairs, then the pairmatching method is conducted by combining it with estimated parameters mentioned above. Although the proposed method is computationally simpler than the conventional schemes, simulation results show that it can approach optimum estimation performance.
基金financially supported by National Natural Science Foundation of China(Grant No.40930317)CHINARE2012-02-02+1 种基金Project SinoProbe-02-03the NSFC Innovation Research Group Fund(Grant No.41021001)
文摘Using seismic data of about one year recorded by 18 broadband stations of ASCENT project, we obtained 2547 receiver func- tions in the northeastern Tibetan Plateau. The Moho depths under 14 stations were calculated by applying the H-x domain search algorithm. The Moho depths under the stations with lower signal-noise ratio (SNR) were estimated by the time delay of the PS conversion. Results show that the Moho depth varies in a range of -40--60 kin. The Moho near the Haiyuan fault is vague, and its depth is larger than those on its two sides. In the Qinling-Qilian Block, the Moho becomes shallower gradually from west to east. To the east of 105~E, the average depth of the Moho is 45 km, whereas the west is 50 km or even deeper. Combining our results with surface wave research, we suggest a boundary between the Qinling and the Qilian Mountains at around 105~E. S wave velocities beneath 15 stations have been obtained through a linear inversion by using Crust2.0 as an ini- tial model, and the crustal thickness that was derived by H-x domain search algorithm was also taken into account. The results are very similar to the results of previous active source studies. The resulting figure indicates that low velocity layers devel- oped in the middle and lower crust beneath the transition zone of the Tibet Block and western Qinling, which may be related to regional faults and deep earth dynamics. The velocity of the middle and lower crust increases from the Songpan Block to the northeastern margin of Tibetan Plateau. Based on the velocity of the crust, the distribution of the low velocity zone and the composition of the curst (Poisson's ratio), we infer that the crust thickening results from the crust shortening along the direc- tion of compression.
基金supported by the National Natural Science Foundations of China under Grant Nos.61273124,61174141China Postdoctoral Science Foundation under Grant No.2011M501132+2 种基金Special Funds for Postdoctoral Innovative Projects of Shandong Province under Grant No.201103043Doctoral Foundation of Taishan University under Grant No.Y11-2-02A Project of Shandong Province Higher Education Science and Technology Program under Grant No.J12LN90
文摘This paper investigates the risk-sensitive fixed-point smoothing estimation for hnear omcrete-time systems with multiple time-delay measurements. The problem considered can be converted into an optimization one in indefinite space. Then the risk-sensitive fixed-point smoother is obtained by solving the optimization problem via innovation analysis theory in indefinite space. Necessary and sufficient conditions guaranteeing the existence of the risk-sensitive smoother are also given when the risk-sensitive parameter is negative. Compared with the conventional approach, a significant advantage of presented approach is that it provides less computational cost.