针对云计算环境下的高能耗问题,从系统节能的角度提出一种节能资源调度算法(energy-saving scheduling algorithm based on min-max,ESSAMM)。在Min-Max算法的基础上综合考虑了用户对于任务期望的完成时间和能量消耗两个因素,以节省任...针对云计算环境下的高能耗问题,从系统节能的角度提出一种节能资源调度算法(energy-saving scheduling algorithm based on min-max,ESSAMM)。在Min-Max算法的基础上综合考虑了用户对于任务期望的完成时间和能量消耗两个因素,以节省任务执行过程中产生的能量消耗,并提高用户的时间QoS满意度,实现负载均衡。将任务集合中各任务按照长度从小到大排序,并根据时间QoS为该集合中长度最大和最小的任务选出符合用户期望的物理资源;根据能量估算模型,计算出这两个任务在各物理机上的执行能耗;选择最小能耗对应的物理机来执行该任务;将这两个任务在任务集合中删除,并重复上述过程,直到任务集合为空。仿真结果表明,相比于Min-Max和Min-Min资源调度算法,该算法能够有效降低系统执行任务产生的总能耗,提高用户时间服务质量,并实现调度系统负载均衡。展开更多
文摘针对云计算环境下的高能耗问题,从系统节能的角度提出一种节能资源调度算法(energy-saving scheduling algorithm based on min-max,ESSAMM)。在Min-Max算法的基础上综合考虑了用户对于任务期望的完成时间和能量消耗两个因素,以节省任务执行过程中产生的能量消耗,并提高用户的时间QoS满意度,实现负载均衡。将任务集合中各任务按照长度从小到大排序,并根据时间QoS为该集合中长度最大和最小的任务选出符合用户期望的物理资源;根据能量估算模型,计算出这两个任务在各物理机上的执行能耗;选择最小能耗对应的物理机来执行该任务;将这两个任务在任务集合中删除,并重复上述过程,直到任务集合为空。仿真结果表明,相比于Min-Max和Min-Min资源调度算法,该算法能够有效降低系统执行任务产生的总能耗,提高用户时间服务质量,并实现调度系统负载均衡。