This paper presents a fault-detection method based on the phase space reconstruction and data mining approaches for the complex electronic system. The approach for the phase space reconstruction of chaotic time series...This paper presents a fault-detection method based on the phase space reconstruction and data mining approaches for the complex electronic system. The approach for the phase space reconstruction of chaotic time series is a combination algorithm of multiple autocorrelation and F-test, by which the quasi-optimal embedding dimension and time delay can be obtained. The data mining algorithm, which calculates the radius of gyration of unit-mass point around the centre of mass in the phase space, can distinguish the fault parameter from the chaotic time series output by the tested system. The experimental results depict that this fault detection method can correctly detect the fault phenomena of electronic system.展开更多
Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict ...Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict future dynamics. Due to the advances of modern technology, big data becomes increasingly accessible and consequently the problem of reconstructing systems from measured data or time series plays a central role in many scientific disciplines. In recent decades, nonlinear methods rooted in state space reconstruction have been developed, and they do not assume any model equations but can recover the dynamics purely from the measured time series data. In this review, the development of state space reconstruction techniques will be introduced and the recent advances in systems prediction and causality inference using state space reconstruction will be presented. Particularly, the cutting-edge method to deal with short-term time series data will be focused on.Finally, the advantages as well as the remaining problems in this field are discussed.展开更多
文摘This paper presents a fault-detection method based on the phase space reconstruction and data mining approaches for the complex electronic system. The approach for the phase space reconstruction of chaotic time series is a combination algorithm of multiple autocorrelation and F-test, by which the quasi-optimal embedding dimension and time delay can be obtained. The data mining algorithm, which calculates the radius of gyration of unit-mass point around the centre of mass in the phase space, can distinguish the fault parameter from the chaotic time series output by the tested system. The experimental results depict that this fault detection method can correctly detect the fault phenomena of electronic system.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0505500)Japan Society for the Promotion of Science KAKENHI Program (Grant No. JP15H05707)National Natural Science Foundation of China (Grant Nos. 11771010,31771476,91530320, 91529303,91439103 and 81471047)
文摘Natural systems are typically nonlinear and complex, and it is of great interest to be able to reconstruct a system in order to understand its mechanism, which cannot only recover nonlinear behaviors but also predict future dynamics. Due to the advances of modern technology, big data becomes increasingly accessible and consequently the problem of reconstructing systems from measured data or time series plays a central role in many scientific disciplines. In recent decades, nonlinear methods rooted in state space reconstruction have been developed, and they do not assume any model equations but can recover the dynamics purely from the measured time series data. In this review, the development of state space reconstruction techniques will be introduced and the recent advances in systems prediction and causality inference using state space reconstruction will be presented. Particularly, the cutting-edge method to deal with short-term time series data will be focused on.Finally, the advantages as well as the remaining problems in this field are discussed.