In order to improve the robustness of the differential number watermarking (DNW) algorithm proposed by us before, we proposed turbo-based DNW (T-DNW) in which the turbo code was employed in the DNW algorithm. The turb...In order to improve the robustness of the differential number watermarking (DNW) algorithm proposed by us before, we proposed turbo-based DNW (T-DNW) in which the turbo code was employed in the DNW algorithm. The turbo code was used to encode the message prior to watermark embedding and decode the watermark posterior to watermark detection. From the analysis and experiments, the following conclusion could be drawn. The T-DNW algorithm has little higher computational complexity than DNW. And both algorithms have the same performance in terms of watermark visual quality impact. Furthermore, the T-DNW algorithm is much more robust against some common attack than DNW. Although the T-DNW algorithm sacrifices a half payload, we think the achievements are encouraging.展开更多
In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and ...In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and disturbance of non-flame phenomena further more, the average changing pixel number of the first-order moments of consecutive flames has been defined in the moment analysis as well. The first-order moments of all kinds of flames used in our experiments present irregularly flickering, and their average changing pixel numbers of first-order moments are greater than fire-like disturbances. For the analysis of flicker frequency of flame, which is extracted and calculated in spatial domain, and therefore it is computational simple and fast. The method of extracting flicker frequency from video images is not affected by the catalogues of combustion material and distance. In experiments, we adopted two kinds of flames, i. e. , fixed flame and movable flame. Many comparing and disturbing experiments were done and verified that the methods can be used as criteria for early fire detection.展开更多
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s...Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.展开更多
In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting fun...In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.展开更多
Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding w...Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding with edge alignment. This method uses blocks of size 4 × 4 and its basic idea is to find motion vector using the edge position in each video coding block. The method finds the motion vectors more accurately and faster than any known classical method that calculates all the possibilities. Our presented algorithm is compared with known classical algorithms using the evaluation function of the peak signal-to-noise ratio. For comparison of the methods we are using parameters such as time, CPU usage, and size of compressed data. The comparison is made on benchmark data in color format YUV. Results of our proposed method are comparable and in some cases better than results of standard classical algorithms.展开更多
This paper mainly revolves the time-frequency image of low probability of intercept(LPI) radar signals and carries out research work on image features selection and extraction and recognition. Since Choi-Williams dist...This paper mainly revolves the time-frequency image of low probability of intercept(LPI) radar signals and carries out research work on image features selection and extraction and recognition. Since Choi-Williams distribution(CWD) uses the exponential kernel of bilinear generalized class of time-frequency distribution, it has an excellent time-frequency aggregation. And it is suitable for detecting LPI radar signals in a low signal-to-noise ratio(SNR) condition. A radial integration method based on the integral rotating factor is proposed to detect LPI radar signals when the signals' time-frequency image is obtained. First, the digital image processing method is used to preprocess the LPI radar signals' time-frequency images after CWD transformation; then, the radial integration method based on the integral rotating factor is used to detect LPI radar signals in the binary images. The analytic results of real data show that the method has a good performance on detecting LPI radar signals in a low SNR condition. Additionally,the method is simple and takes less logic resources and has the potential of real-time detection of LPI radar signals.展开更多
It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolutio...It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.展开更多
文摘In order to improve the robustness of the differential number watermarking (DNW) algorithm proposed by us before, we proposed turbo-based DNW (T-DNW) in which the turbo code was employed in the DNW algorithm. The turbo code was used to encode the message prior to watermark embedding and decode the watermark posterior to watermark detection. From the analysis and experiments, the following conclusion could be drawn. The T-DNW algorithm has little higher computational complexity than DNW. And both algorithms have the same performance in terms of watermark visual quality impact. Furthermore, the T-DNW algorithm is much more robust against some common attack than DNW. Although the T-DNW algorithm sacrifices a half payload, we think the achievements are encouraging.
基金Supported by " Experimental Scale Studies in Smoke Control Strategy in Large Linear Atria in HKSAR" (B Q372)
文摘In this paper, motion analysis methods based on the moment features and flicker frequency features for early fire flame from ordinary CCD video camera were proposed, and in order to describe the changing of flame and disturbance of non-flame phenomena further more, the average changing pixel number of the first-order moments of consecutive flames has been defined in the moment analysis as well. The first-order moments of all kinds of flames used in our experiments present irregularly flickering, and their average changing pixel numbers of first-order moments are greater than fire-like disturbances. For the analysis of flicker frequency of flame, which is extracted and calculated in spatial domain, and therefore it is computational simple and fast. The method of extracting flicker frequency from video images is not affected by the catalogues of combustion material and distance. In experiments, we adopted two kinds of flames, i. e. , fixed flame and movable flame. Many comparing and disturbing experiments were done and verified that the methods can be used as criteria for early fire detection.
基金Project(51576213)supported by the National Natural Science Foundation of ChinaProject(2015RS4015)supported by the Hunan Scientific Program,ChinaProject(2016zzts323)supported by the Innovation Project of Central South University,China
文摘Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.
基金supported by the National Research Foundation of Korea Grant funded by the Korea Ministry of Science and Technology under Grant No. 2012-0009228
文摘In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.
文摘Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding with edge alignment. This method uses blocks of size 4 × 4 and its basic idea is to find motion vector using the edge position in each video coding block. The method finds the motion vectors more accurately and faster than any known classical method that calculates all the possibilities. Our presented algorithm is compared with known classical algorithms using the evaluation function of the peak signal-to-noise ratio. For comparison of the methods we are using parameters such as time, CPU usage, and size of compressed data. The comparison is made on benchmark data in color format YUV. Results of our proposed method are comparable and in some cases better than results of standard classical algorithms.
文摘This paper mainly revolves the time-frequency image of low probability of intercept(LPI) radar signals and carries out research work on image features selection and extraction and recognition. Since Choi-Williams distribution(CWD) uses the exponential kernel of bilinear generalized class of time-frequency distribution, it has an excellent time-frequency aggregation. And it is suitable for detecting LPI radar signals in a low signal-to-noise ratio(SNR) condition. A radial integration method based on the integral rotating factor is proposed to detect LPI radar signals when the signals' time-frequency image is obtained. First, the digital image processing method is used to preprocess the LPI radar signals' time-frequency images after CWD transformation; then, the radial integration method based on the integral rotating factor is used to detect LPI radar signals in the binary images. The analytic results of real data show that the method has a good performance on detecting LPI radar signals in a low SNR condition. Additionally,the method is simple and takes less logic resources and has the potential of real-time detection of LPI radar signals.
基金supported by the Chinese Academy of Sciences Action Plan for West Development Project (Grant No. KZCX2-XB3-15)the National High-tech R&D Program of China (Grant No. 2012AA12A304)
文摘It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.