Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to f...Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to find the genuine reason leading to effective resistance response of tree to insects attacking. The release situation of the induced volatiles of the plant was analyzed by TCT-GC/MS at 24 hours after damages. The results indicated that some of the volatiles such as (Z)-3-hexenyl acetate, decanal, 3-hexenyl isovalerate, nonanal, ocimene, and 2-cyanobutane can be induced by both insects attack-ing and mechanical damage, while 2,6-dimethyl-1,3,5,7-octatetraene, 2-methyl-6-methylene-1,7-octadien-3-one, caryophyllene, Isovaleronitrile, diethyl-methyl-benzamide, and dicapryl phthalate were only induced by insects attacking. Such difference in volatiles was attributed to that there existed active components in oral sections of the larvae of Lymantria dispar展开更多
There is an increasing likelihood that invasive plants are again exposed to their co-evolved specialist herbivores in the non-native range.However,whether there is a latitudinal pattern associated with the resistance ...There is an increasing likelihood that invasive plants are again exposed to their co-evolved specialist herbivores in the non-native range.However,whether there is a latitudinal pattern associated with the resistance of an invasive plant to its co-evolved herbivores and how soil microbes affect resistance has been little explored.We hypothesized that the resistance of invasive Solidago canadensis to its co-evolved insect herbivore Corythucha marmorata could increase with latitude,and that local rhizosphere microbes could facilitate invasive plants to become resistant to their co-evolved herbivores.We conducted a field survey and a greenhouse experiment to examine whether there was a latitudinal pattern in the abundance of C.marmorata and in the damage it caused to S.canadensis in China.We tested whether local rhizosphere microbes of invasive plants can promote the resistance of S.canadensis to C.marmorata herbivory.In the field survey,both density of C.marmorata and damage level of S.canadensis were positively correlated with latitude,and with S.canadensis plant growth,indicating a latitudinal pattern in the resistance of S.canadensis to C.marmorata.However,in the greenhouse experiment,S.canadensis from different latitudes did not suffer significantly from different levels of damage from C.marmorata.Additionally,the damage level of S.canadensis was lower when rhizosphere soil and rhizomes originated from field S.canadensis with same damage level than with different damage levels.This result indicates that local rhizosphere soil microbes promote the adaptation of S.canadensis to resistance of C.marmorata.展开更多
Climatic variations are becoming important limiting factors for agriculture productivity,as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pes...Climatic variations are becoming important limiting factors for agriculture productivity,as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests.Elevated CO_2 and O_3 are two important climatic factors that have been widely studied before.Elevated CO_2 or O_3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants.Many studies have shown that elevated CO_2 or O_3 decreases the plant nitrogen content,which modulates the characteristics of vector insects.Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO_2 or O_3.In the current review,we describe how elevated CO_2 or O_3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways.We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO_2 or O_3.We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO_2 or O_3.展开更多
基金This research is supported by National Natural Science Foundation of China (No.30170764) and the Postgraduate Training Fund of Graduate School of Beijing Forestry University (No.03SW004)
文摘Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to find the genuine reason leading to effective resistance response of tree to insects attacking. The release situation of the induced volatiles of the plant was analyzed by TCT-GC/MS at 24 hours after damages. The results indicated that some of the volatiles such as (Z)-3-hexenyl acetate, decanal, 3-hexenyl isovalerate, nonanal, ocimene, and 2-cyanobutane can be induced by both insects attack-ing and mechanical damage, while 2,6-dimethyl-1,3,5,7-octatetraene, 2-methyl-6-methylene-1,7-octadien-3-one, caryophyllene, Isovaleronitrile, diethyl-methyl-benzamide, and dicapryl phthalate were only induced by insects attacking. Such difference in volatiles was attributed to that there existed active components in oral sections of the larvae of Lymantria dispar
基金supported by the Ten Thousand Talent Program of Zhejiang Province(2019R52043)the National Key Research and Development Program of China(2016YFC1201100)the National Natural Science Foundation of China(31270461).
文摘There is an increasing likelihood that invasive plants are again exposed to their co-evolved specialist herbivores in the non-native range.However,whether there is a latitudinal pattern associated with the resistance of an invasive plant to its co-evolved herbivores and how soil microbes affect resistance has been little explored.We hypothesized that the resistance of invasive Solidago canadensis to its co-evolved insect herbivore Corythucha marmorata could increase with latitude,and that local rhizosphere microbes could facilitate invasive plants to become resistant to their co-evolved herbivores.We conducted a field survey and a greenhouse experiment to examine whether there was a latitudinal pattern in the abundance of C.marmorata and in the damage it caused to S.canadensis in China.We tested whether local rhizosphere microbes of invasive plants can promote the resistance of S.canadensis to C.marmorata herbivory.In the field survey,both density of C.marmorata and damage level of S.canadensis were positively correlated with latitude,and with S.canadensis plant growth,indicating a latitudinal pattern in the resistance of S.canadensis to C.marmorata.However,in the greenhouse experiment,S.canadensis from different latitudes did not suffer significantly from different levels of damage from C.marmorata.Additionally,the damage level of S.canadensis was lower when rhizosphere soil and rhizomes originated from field S.canadensis with same damage level than with different damage levels.This result indicates that local rhizosphere soil microbes promote the adaptation of S.canadensis to resistance of C.marmorata.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11050400)the National Natural Science Foundation of China(31370438)the R&D Special Fund for the Public Welfare Industry(201303019)
文摘Climatic variations are becoming important limiting factors for agriculture productivity,as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests.Elevated CO_2 and O_3 are two important climatic factors that have been widely studied before.Elevated CO_2 or O_3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants.Many studies have shown that elevated CO_2 or O_3 decreases the plant nitrogen content,which modulates the characteristics of vector insects.Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO_2 or O_3.In the current review,we describe how elevated CO_2 or O_3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways.We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO_2 or O_3.We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO_2 or O_3.