Chongming Island, the third largest island in China and the largest alluvialisland in the world, is situated in the north of Shanghai Municipality at the mouth of theChangjiang (Yangtze) River. Along the fertile and p...Chongming Island, the third largest island in China and the largest alluvialisland in the world, is situated in the north of Shanghai Municipality at the mouth of theChangjiang (Yangtze) River. Along the fertile and prosperous sea coast there are a total area ofover 120 x 10~3ha, with a population of 735 000, accruing some 500ha of new tidal land resourcescome from silt, sand and mud carried by the Changjiang River every year, extending about 140m peryear. This dynamic process of alluvial growth has run for some 1500 years. Mudflat on ChongmingIsland at the mouth of the Changjiang River is a resting ground for migratory birds and host morethan a hundred species, including rare cranes and geese. But the local people keep reclaiming thetidal land for economic development. Obviously, it is crucial to have a well-concerted plan forfuture exploitation. In this study, we attempted to investigate the status changes of land use andwild life habitats on Chongming Island in recent 10 years, and then analyzed different humanactivities and their effects on wild life habitats using satellite image data (1990, 1997 and 2000)as well as field survey. Based on the analysis, this study explored the relationships between islandgrowth and land use/cover change (LUCC), predicted what the habitat would be like in the future andtried to find more effective use of this new growing resource. At last, this study provided somepreliminary management plans for Chongming Island that will coordinate the development of localeconomies and the conservation of wild life and their habitats.展开更多
By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alka...By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alkalized land,cropland,water area and forestland is extracted by man-computer interactive interpretation method with ArcView and ArcInfo GIS software, and statistics data is acquired. On the basis of this the changing trend of land use types in the next ten years is forecasted and analyzed with Markov model. The results indicate that the problem of grassland degradation in the study area is quite serious.展开更多
A hydrophobic complex of Cu2+[bis-salicylic aldehyde-o-phenylenediamine], Cu-SPA, was prepared and used as a heterogeneous photocatalyst to degrade organic pollutants in water under visible irradiation (λ≥420 nm)...A hydrophobic complex of Cu2+[bis-salicylic aldehyde-o-phenylenediamine], Cu-SPA, was prepared and used as a heterogeneous photocatalyst to degrade organic pollutants in water under visible irradiation (λ≥420 nm) at neutral pH. The structure of complex was characterized by using nuclear magnetic resonance (NMR), elemental analysis, IR and UV-vis spectrometries. Degradation of Rhodamine B (RhB), Sulforhodamine B (SRB) and Benzoic acid (BA) in water were used as model reactions to evaluate the photocatalytic activities of Cu-SPA. The results indicated that RhB and SRB were easily adsorbed on the hydrophobic surface of Cu-SPA from aqueous solution (the maximum adsorption amount: Qmax = 11.09 and 8.05 μmol/g, respectively). Under visible irradiation, RhB and SRB were decolorized completely after 210 and 240 min, respectively, and BA was removed completely after 5 h. The efficiency of H202 was 〉 95%, in contrast to that of the reaction without catalyst or light (〈 20%). In water soluble medium, the hydrophobic Cu-SPA can be used more than 6 cycles. ESR results and the behavior of cy- clic voltammetry showed that, in the reaction process, Cu2+-SPA was reduced to intermediate state Cu+-SPA firstly, which was extremely unstable and reacted rapidly with H2O2, leading to high reactive oxygen species (.OH radical ) to degrade the substrate.展开更多
The authors prove Carleman estimates for spaces of negative orders, and use these estimates to problem of determining L^p-potentials. An L^2-1evel continuation results for the SchrSdinger equation are the Schrodinger ...The authors prove Carleman estimates for spaces of negative orders, and use these estimates to problem of determining L^p-potentials. An L^2-1evel continuation results for the SchrSdinger equation are the Schrodinger equation in Sobolev prove the uniqueness in the inverse observability inequality and unique also obtained.展开更多
The scattering length formula was formulated and proved in special cases by Kac in 1974 and 1975.It was discussed by a series of authors,including Taylor 1976,Tamura 1992 and Takahashi 1990.The formula was proved by T...The scattering length formula was formulated and proved in special cases by Kac in 1974 and 1975.It was discussed by a series of authors,including Taylor 1976,Tamura 1992 and Takahashi 1990.The formula was proved by Takeda 2010 in symmetric case and by He 2011 assuming weak duality.In this article,we shall use the powerful tool of Kutznetsov measures to prove this formula in the general framework of right Markov processes without further assumptions.展开更多
文摘Chongming Island, the third largest island in China and the largest alluvialisland in the world, is situated in the north of Shanghai Municipality at the mouth of theChangjiang (Yangtze) River. Along the fertile and prosperous sea coast there are a total area ofover 120 x 10~3ha, with a population of 735 000, accruing some 500ha of new tidal land resourcescome from silt, sand and mud carried by the Changjiang River every year, extending about 140m peryear. This dynamic process of alluvial growth has run for some 1500 years. Mudflat on ChongmingIsland at the mouth of the Changjiang River is a resting ground for migratory birds and host morethan a hundred species, including rare cranes and geese. But the local people keep reclaiming thetidal land for economic development. Obviously, it is crucial to have a well-concerted plan forfuture exploitation. In this study, we attempted to investigate the status changes of land use andwild life habitats on Chongming Island in recent 10 years, and then analyzed different humanactivities and their effects on wild life habitats using satellite image data (1990, 1997 and 2000)as well as field survey. Based on the analysis, this study explored the relationships between islandgrowth and land use/cover change (LUCC), predicted what the habitat would be like in the future andtried to find more effective use of this new growing resource. At last, this study provided somepreliminary management plans for Chongming Island that will coordinate the development of localeconomies and the conservation of wild life and their habitats.
文摘By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alkalized land,cropland,water area and forestland is extracted by man-computer interactive interpretation method with ArcView and ArcInfo GIS software, and statistics data is acquired. On the basis of this the changing trend of land use types in the next ten years is forecasted and analyzed with Markov model. The results indicate that the problem of grassland degradation in the study area is quite serious.
基金supported by the National Natural Science Foundation of China(21207079,21307073,21177072,21377067)
文摘A hydrophobic complex of Cu2+[bis-salicylic aldehyde-o-phenylenediamine], Cu-SPA, was prepared and used as a heterogeneous photocatalyst to degrade organic pollutants in water under visible irradiation (λ≥420 nm) at neutral pH. The structure of complex was characterized by using nuclear magnetic resonance (NMR), elemental analysis, IR and UV-vis spectrometries. Degradation of Rhodamine B (RhB), Sulforhodamine B (SRB) and Benzoic acid (BA) in water were used as model reactions to evaluate the photocatalytic activities of Cu-SPA. The results indicated that RhB and SRB were easily adsorbed on the hydrophobic surface of Cu-SPA from aqueous solution (the maximum adsorption amount: Qmax = 11.09 and 8.05 μmol/g, respectively). Under visible irradiation, RhB and SRB were decolorized completely after 210 and 240 min, respectively, and BA was removed completely after 5 h. The efficiency of H202 was 〉 95%, in contrast to that of the reaction without catalyst or light (〈 20%). In water soluble medium, the hydrophobic Cu-SPA can be used more than 6 cycles. ESR results and the behavior of cy- clic voltammetry showed that, in the reaction process, Cu2+-SPA was reduced to intermediate state Cu+-SPA firstly, which was extremely unstable and reacted rapidly with H2O2, leading to high reactive oxygen species (.OH radical ) to degrade the substrate.
基金supported by the Japanese Government Scholarship,the National Natural Science Foundation ofChina(No.10801030)the Science Foundation for Young Teachers of Northeast Normal University(No.20080103)+1 种基金the Japan Society for the Promotion of Science(No.15340027)the Grant from the Ministryof Education,Cultures,Sports and Technology of Japan(No.17654019)
文摘The authors prove Carleman estimates for spaces of negative orders, and use these estimates to problem of determining L^p-potentials. An L^2-1evel continuation results for the SchrSdinger equation are the Schrodinger equation in Sobolev prove the uniqueness in the inverse observability inequality and unique also obtained.
基金supported by National Natural Science Foundation of China(Grant Nos.11271240 and 11071044)
文摘The scattering length formula was formulated and proved in special cases by Kac in 1974 and 1975.It was discussed by a series of authors,including Taylor 1976,Tamura 1992 and Takahashi 1990.The formula was proved by Takeda 2010 in symmetric case and by He 2011 assuming weak duality.In this article,we shall use the powerful tool of Kutznetsov measures to prove this formula in the general framework of right Markov processes without further assumptions.