In this study, two deep convective cloud cases were analyzed in detail to study their initiation and evolution. In both cases, all deep convective clouds were positioned at the rear of the cold front cloud bands and p...In this study, two deep convective cloud cases were analyzed in detail to study their initiation and evolution. In both cases, all deep convective clouds were positioned at the rear of the cold front cloud bands and propagated backward. Satellite data showed that prior to initiation of the deep convective clouds, thermodynamic and moist conditions were favorable for their formation. In the morning, a deep convective cloud at the rear of cold front cloud band propagated backward, the outflow boundary of which created favorable conditions for initiation. An additional deep convective cloud cluster moved in from the west and interacted with the outflow boundary to develop a mesoscale convective system(MCS) with large, ellipse-shaped deep convective clouds that brought strong rainfall. The initiation and evolution of these clouds are shown clearly in satellite data and provide significant information for nowcasting and short-term forecasting.展开更多
Based on conventional meteorological observation data, NECP 1°×1° reanalysis data, precipitation data from automatic weather stations on the ground, FY- 2E satellite cloud images, and so forth, the circ...Based on conventional meteorological observation data, NECP 1°×1° reanalysis data, precipitation data from automatic weather stations on the ground, FY- 2E satellite cloud images, and so forth, the circulation background, formation mechanism and features of a satellite cloud image of a local heavy rainstorm process in Shandong Province during August 8-9 in 2010 were analyzed. The results showed that the slow eastward movement of short-wave trough at middle and high latitudes, the stable maintenance of the subtropical high and ground cyclone, and the strong development of extra low-level southeast flow were large-scale circulation back- grounds of occurrence of the rainstorm; the rainstorm generated under the effects of mesoscale echo clusters or echo belts and mesoscale convective cloud clusters; precipitation mainly happened in periods when convective cloud clusters generated, developed and matured, and short-time heavy precipitation mainly appeared in the west, southwest and south of convective cloud clusters; extra low-level southeast flow was very conducive to the occurrence of short-time heavy precipitation; mesoscale convective systems rose in the whole troposphere, and the constant enhancement of low-level θse frontal zone provided favorable unstable energy for the occurrence of convective heavy rainfall.展开更多
基金supported by the National Natural Science Foundation of China"Study of Characteristics of the Environmental Field before the Deep Convective Cloud Initiated Using Geostational Meteorological Satellite Data"(Grant No.41005026)
文摘In this study, two deep convective cloud cases were analyzed in detail to study their initiation and evolution. In both cases, all deep convective clouds were positioned at the rear of the cold front cloud bands and propagated backward. Satellite data showed that prior to initiation of the deep convective clouds, thermodynamic and moist conditions were favorable for their formation. In the morning, a deep convective cloud at the rear of cold front cloud band propagated backward, the outflow boundary of which created favorable conditions for initiation. An additional deep convective cloud cluster moved in from the west and interacted with the outflow boundary to develop a mesoscale convective system(MCS) with large, ellipse-shaped deep convective clouds that brought strong rainfall. The initiation and evolution of these clouds are shown clearly in satellite data and provide significant information for nowcasting and short-term forecasting.
文摘Based on conventional meteorological observation data, NECP 1°×1° reanalysis data, precipitation data from automatic weather stations on the ground, FY- 2E satellite cloud images, and so forth, the circulation background, formation mechanism and features of a satellite cloud image of a local heavy rainstorm process in Shandong Province during August 8-9 in 2010 were analyzed. The results showed that the slow eastward movement of short-wave trough at middle and high latitudes, the stable maintenance of the subtropical high and ground cyclone, and the strong development of extra low-level southeast flow were large-scale circulation back- grounds of occurrence of the rainstorm; the rainstorm generated under the effects of mesoscale echo clusters or echo belts and mesoscale convective cloud clusters; precipitation mainly happened in periods when convective cloud clusters generated, developed and matured, and short-time heavy precipitation mainly appeared in the west, southwest and south of convective cloud clusters; extra low-level southeast flow was very conducive to the occurrence of short-time heavy precipitation; mesoscale convective systems rose in the whole troposphere, and the constant enhancement of low-level θse frontal zone provided favorable unstable energy for the occurrence of convective heavy rainfall.