期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
顾及星像点分布的恒星相机在轨检校 被引量:3
1
作者 谢俊峰 江万寿 龚健雅 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第10期1271-1276,共6页
由于卫星发射前后以及在轨运行过程中,环境因素的变化都可能引起恒星相机参数发生改变,从而导致星敏感器姿态测量精度下降.将多片空间后方交会方法应用于恒星相机的在轨检校.在利用该方法检校时,实验发现检校结果的精度受到参与检校的... 由于卫星发射前后以及在轨运行过程中,环境因素的变化都可能引起恒星相机参数发生改变,从而导致星敏感器姿态测量精度下降.将多片空间后方交会方法应用于恒星相机的在轨检校.在利用该方法检校时,实验发现检校结果的精度受到参与检校的恒星影像上星像点分布的影响,由此进一步提出了凸包面积百分比准则,该方法自动选取分布较好的影像用于检校,有助于提高检校精度.实验结果证明:基于后方交会进行恒星相机在轨检校时,利用凸包法选取的影像片进行检校的精度明显优于未选片时检校的结果. 展开更多
关键词 相机 在轨检校 后方交会 凸包面积百分比 星像点分布
下载PDF
Fast uniform content-based satellite image registration using the scale-invariant feature transform descriptor 被引量:3
2
作者 Hamed BOZORGI Ali JAFARI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第8期1108-1116,共9页
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ... Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points. 展开更多
关键词 Content-based image retrieval Feature point distribution Image registration Linear discriminant analysis REMOTESENSING Scale-invariant feature transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部