如果图 G 的支撑子图 M 的每个分支都同构于{K_(1,1)K_(1,2,)…,K_(1,k}(k≥2)中的某个 K_(1,i),则 M(?)叫做 G 的星形因子。进一步,如果对于图 G 的每一条边都存在一个星形因子包含这条边,则称图 G 是星形因子覆盖的。本文给出了图是{P...如果图 G 的支撑子图 M 的每个分支都同构于{K_(1,1)K_(1,2,)…,K_(1,k}(k≥2)中的某个 K_(1,i),则 M(?)叫做 G 的星形因子。进一步,如果对于图 G 的每一条边都存在一个星形因子包含这条边,则称图 G 是星形因子覆盖的。本文给出了图是{P_2,P_3}一因子覆盖的充要条件,并证明了任意正则图均存在星形因子覆盖。展开更多
文摘如果图 G 的支撑子图 M 的每个分支都同构于{K_(1,1)K_(1,2,)…,K_(1,k}(k≥2)中的某个 K_(1,i),则 M(?)叫做 G 的星形因子。进一步,如果对于图 G 的每一条边都存在一个星形因子包含这条边,则称图 G 是星形因子覆盖的。本文给出了图是{P_2,P_3}一因子覆盖的充要条件,并证明了任意正则图均存在星形因子覆盖。