Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mic...Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mice were used to examine the lineage differentiation of SOX2-positive cells during the development of cerebral cortex.Primary NSCs/astrocytes culture,ChIP-seq and Western Blot were adopted to analyze and verify the expression of candidate genes.Pharmacological manipulation,neurosphere formation,photochemical ischemia,immunofluorescence staining and behavior tests were adopted to evaluate the effects of activating DRD2 signaling on astrocytic dedifferentiation.Results:Immunofluorescence staining demonstrated the NSC-astrocyte switch of SOX2-expression in the normal development of cerebral cortex.ChIP-seq revealed enrichment of DRD2 signaling by SOX2-bound enhancers in NSCs and SOX2-bound promoters in astrocytes.Western Blot and immunofluorescence staining verified the expression of DRD2 in NSCs and reactive astrocytes.Application of quinagolide hydrocholoride(QH),an agonist of DRD2,significantly promoted astrocytic dedifferentiation both in vitro and in vivo following ischemia.In addition,quinagolide hydrocholoride treatment improved locomotion recovery.Conclusion:Activating DRD2 signaling facilitates astrocytic dedifferentiation and may be used to treat ischemic stroke.展开更多
Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivatio...Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivation condition with different concentrations (in ng/ml: 0, 2, 20, or 200) of CNTF. After cultured for 24 h, the shape and the cell cycle of astrocytes were examined by immunocytochemistry and flow cytometer, respectively. Results The immunoactivity of glial fibrillary acidic protein (GFAP) and the nuclear size of astrocytes were increased when CNTF was applied, whether cells were cultured in medium with or without serum. CNTF promoted astrocytes to enter the cell cycle in medium with serum, but had no this effect in medium without serum. Conclusion In medium without serum, astrocytes could differentiate into activated state ceils with CNTF application, but could not proliferate; in medium with serum, astrocytes could proliferate with aid of CNTF.展开更多
HCMV is a major cause of congenital brain disease in humans, and its neuropathogenesis is not yet fully understood. The objective of the present study is to investigate the effect of human cytomegalovirus (HCMV) infec...HCMV is a major cause of congenital brain disease in humans, and its neuropathogenesis is not yet fully understood. The objective of the present study is to investigate the effect of human cytomegalovirus (HCMV) infection on human hippocampus neural precursor cell (NPCs) differentiation in vitro. Fetal hippocampus tissue was dissociated mechanically and then cultured in proliferation medium with EGF and bFGF. The identification and purity of the NPCs were confirmed by using immunofluorescence to detect the expression of the NPCs marker-Nestin. To drive NPCs differentiation, bFGF and EGF were withdrawn from the medium and replaced with FBS (10%). HCMV AD169 (MOI=5) was added into the differentiation medium at the onset of the differentiation. After 7 days of differentiation, in order to confirm whether NPCs are permissive for HCMV infection, immunofluorescence was used to stain for the presence of immediate early (IE) and late (pp65) HCMV proteins in the infected cells. The effects of HCMV infection on NPCs’ differentiation was observed by detecting the ratio of nestin and GFAP positive cells with confocal microscopy and immunofluorescence. The data showed that 95%±8% of the cells (passage 4-8) cultured were Nestin positive which suggested that majority of the cells were NPCs. On day 7 postinfection, most of the infected cells were IE and PP65 positive. The percentage of Nestin-positive cells were 93%±10% and 50%±19% (t=6.03, p<0.01) and those of GFAP-positive cells were 55±17% and 81%±11% (t=3.77, p<0.01) in HCMV treated and control groups respectively. These findings indicate that NPCs are HCMV permissive cells and HCMV (AD 169) infection suppresses the differentiation of Hippocampus-genetic human NPCs into astrocytes. These effects may provide part of the explanation for the abnormalities in brain development associated with congenital HCMV infection.展开更多
Horizontal cells (HCs) mediate negative feedback to photoreceptors. In the mammalian retina, there are two types of HCs, which are extensively coupled to neighboring cells through homologous gap junctions. The permeab...Horizontal cells (HCs) mediate negative feedback to photoreceptors. In the mammalian retina, there are two types of HCs, which are extensively coupled to neighboring cells through homologous gap junctions. The permeability and therefore the strength of feedback can be regulated by light intensity, dopamine and many other factors. However, the component(s) of the most prominent gap junctions, those between A-type HCs in the rabbit retina, is still unknown. In this study, we compared the sequences of many types of mammalian connexins, obtained partial sequences of rabbit connexin 50 and 57. Using specific primers designed against the rabbit sequences, we identified mRNAs of connexin 50 and/or 57 in visually selected single A-type HC using multiplex RT-PCR.展开更多
Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H202) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative contr...Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H202) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H202 treatment group, 100 μmol/L H202 treatment for 24 h; (3) and (4) parecoxib pre- treatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H202. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Results: Compared to the NC group, exposure to H202 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H202 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P〈0.001), and induced apoptosis (P〈0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P〈0.05) as compared to the H202 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be im- plicated in these changes. Conclusions: Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H202.展开更多
文摘Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mice were used to examine the lineage differentiation of SOX2-positive cells during the development of cerebral cortex.Primary NSCs/astrocytes culture,ChIP-seq and Western Blot were adopted to analyze and verify the expression of candidate genes.Pharmacological manipulation,neurosphere formation,photochemical ischemia,immunofluorescence staining and behavior tests were adopted to evaluate the effects of activating DRD2 signaling on astrocytic dedifferentiation.Results:Immunofluorescence staining demonstrated the NSC-astrocyte switch of SOX2-expression in the normal development of cerebral cortex.ChIP-seq revealed enrichment of DRD2 signaling by SOX2-bound enhancers in NSCs and SOX2-bound promoters in astrocytes.Western Blot and immunofluorescence staining verified the expression of DRD2 in NSCs and reactive astrocytes.Application of quinagolide hydrocholoride(QH),an agonist of DRD2,significantly promoted astrocytic dedifferentiation both in vitro and in vivo following ischemia.In addition,quinagolide hydrocholoride treatment improved locomotion recovery.Conclusion:Activating DRD2 signaling facilitates astrocytic dedifferentiation and may be used to treat ischemic stroke.
文摘Objective To observe the activating effect of ciliary neurotrophic factor (CNTF) on astrocyte in vitro. Methods Astrocytes cultured purely from newborn rats. Cerebral cortex was raised in normal and serum deprivation condition with different concentrations (in ng/ml: 0, 2, 20, or 200) of CNTF. After cultured for 24 h, the shape and the cell cycle of astrocytes were examined by immunocytochemistry and flow cytometer, respectively. Results The immunoactivity of glial fibrillary acidic protein (GFAP) and the nuclear size of astrocytes were increased when CNTF was applied, whether cells were cultured in medium with or without serum. CNTF promoted astrocytes to enter the cell cycle in medium with serum, but had no this effect in medium without serum. Conclusion In medium without serum, astrocytes could differentiate into activated state ceils with CNTF application, but could not proliferate; in medium with serum, astrocytes could proliferate with aid of CNTF.
基金National Natural Science Foundation ofChina (30770105)Qingdao Technology Project (08-1-3-30-jch) Mt. Tai Scholar Construction Engineering Special Foundation of Shandong province, China.
文摘HCMV is a major cause of congenital brain disease in humans, and its neuropathogenesis is not yet fully understood. The objective of the present study is to investigate the effect of human cytomegalovirus (HCMV) infection on human hippocampus neural precursor cell (NPCs) differentiation in vitro. Fetal hippocampus tissue was dissociated mechanically and then cultured in proliferation medium with EGF and bFGF. The identification and purity of the NPCs were confirmed by using immunofluorescence to detect the expression of the NPCs marker-Nestin. To drive NPCs differentiation, bFGF and EGF were withdrawn from the medium and replaced with FBS (10%). HCMV AD169 (MOI=5) was added into the differentiation medium at the onset of the differentiation. After 7 days of differentiation, in order to confirm whether NPCs are permissive for HCMV infection, immunofluorescence was used to stain for the presence of immediate early (IE) and late (pp65) HCMV proteins in the infected cells. The effects of HCMV infection on NPCs’ differentiation was observed by detecting the ratio of nestin and GFAP positive cells with confocal microscopy and immunofluorescence. The data showed that 95%±8% of the cells (passage 4-8) cultured were Nestin positive which suggested that majority of the cells were NPCs. On day 7 postinfection, most of the infected cells were IE and PP65 positive. The percentage of Nestin-positive cells were 93%±10% and 50%±19% (t=6.03, p<0.01) and those of GFAP-positive cells were 55±17% and 81%±11% (t=3.77, p<0.01) in HCMV treated and control groups respectively. These findings indicate that NPCs are HCMV permissive cells and HCMV (AD 169) infection suppresses the differentiation of Hippocampus-genetic human NPCs into astrocytes. These effects may provide part of the explanation for the abnormalities in brain development associated with congenital HCMV infection.
基金supported by a MOST Major State Basic Research Program Grant to the Institute of Neuroscience(G2000077800)NSFC project grants(30170305,30270460)to SH
文摘Horizontal cells (HCs) mediate negative feedback to photoreceptors. In the mammalian retina, there are two types of HCs, which are extensively coupled to neighboring cells through homologous gap junctions. The permeability and therefore the strength of feedback can be regulated by light intensity, dopamine and many other factors. However, the component(s) of the most prominent gap junctions, those between A-type HCs in the rabbit retina, is still unknown. In this study, we compared the sequences of many types of mammalian connexins, obtained partial sequences of rabbit connexin 50 and 57. Using specific primers designed against the rabbit sequences, we identified mRNAs of connexin 50 and/or 57 in visually selected single A-type HC using multiplex RT-PCR.
基金Project supported by the Anhui Education Department(No.KJ2015B004by)the Bengbu Medical College Innovation Grant(No.BYKY1424ZD),China
文摘Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H202) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H202 treatment group, 100 μmol/L H202 treatment for 24 h; (3) and (4) parecoxib pre- treatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H202. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Results: Compared to the NC group, exposure to H202 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H202 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P〈0.001), and induced apoptosis (P〈0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P〈0.05) as compared to the H202 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be im- plicated in these changes. Conclusions: Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H202.