期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
层叠式SOM神经网络星图识别算法及FPGA验证 被引量:3
1
作者 郑天宇 尹达一 赵玥皎 《红外技术》 CSCD 北大核心 2018年第3期246-252,共7页
为了对空间天文望远镜精细导星仪获得的星图完成识别,提出一种层叠式自组织映射(SOM)神经网络算法模型,将该模型在硬件中实现星特征矢量匹配算法。首先,针对精细导星仪的特点详细介绍了导航星库的建立、星特征矢量的构建和筛选方法;其次... 为了对空间天文望远镜精细导星仪获得的星图完成识别,提出一种层叠式自组织映射(SOM)神经网络算法模型,将该模型在硬件中实现星特征矢量匹配算法。首先,针对精细导星仪的特点详细介绍了导航星库的建立、星特征矢量的构建和筛选方法;其次,建立层叠式SOM神经网络模型,对其权值进行在线训练;最后,设计算法离线运行硬件电路并将其在FPGA中实现。仿真与测试结果表明,基于层叠式自组织神经网络的星图识别算法识别率高、抗噪声能力强、识别速度快。星点位置噪声为0.648?,星等噪声为0.18视星等条件下星图识别成功率在80%以上,新算法在FPGA中运行速度是PC机上传统三角形法的100倍。对精细导星仪星图识别算法的优化设计提供了合理可行的参考依据。 展开更多
关键词 精细导 图识别 星特征矢量 SOM神经网络 FPGA验证
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部