A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet...A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.展开更多
A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation d...A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.展开更多
This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be app...This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be applied to any typical one-and two-degree-of-freedom plane PGTs containing any number of simple, compound or complex-compound planetary gear sets. The efficiency analysis of this method features a systematized and programmed process and its independence of the speed ratio. The primary contribution of this work lies in the integration of quantitative calculation, qualitative evolution and comparative analysis of kinematics of PGTs into one diagram, and in the integration of kinematics and efficiency analysis into a single method system. First, the analytical geometry method is defined, its basic properties are given, and the systematization procedure to perform kinematic analysis is demonstrated. As an application, analytical geometry diagrams of common PGTs are exhibited in the form of a list, whose kinematic characteristics and general evolution tendency are discussed. Then, with the mapping of PGTs onto the angular speed plane, the efficiency formula of analytical geometry, which has an extremely concise form, and a simple method for power flow estimation are put forward. Moreover, a general procedure is provided to analyze the efficiency and power flow. Finally, four numerical examples including a complicated eleven-link differential PGTs are given to illustrate the simpleness and intuitiveness of the analytical geometry method.展开更多
基金Projects(51375226,51305196,51475226) supported by the National Natural Science Foundation of ChinaProjects(NZ2013303,NZ2014201) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.
基金Project(50775108) supported by the National Natural Science Foundation of China
文摘A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.
基金supported by the National Natural Science Foundation of China (Grant No. 51075407)the Fundamental Research Funds for the Central Universities (Grant No. CDJXS11111143)
文摘This paper presents an analytical geometry method for kinematics and efficiency of planetary gear trains (PGTs). The novel method which is capable of evolution and contrast analysis of mechanism kinematics, can be applied to any typical one-and two-degree-of-freedom plane PGTs containing any number of simple, compound or complex-compound planetary gear sets. The efficiency analysis of this method features a systematized and programmed process and its independence of the speed ratio. The primary contribution of this work lies in the integration of quantitative calculation, qualitative evolution and comparative analysis of kinematics of PGTs into one diagram, and in the integration of kinematics and efficiency analysis into a single method system. First, the analytical geometry method is defined, its basic properties are given, and the systematization procedure to perform kinematic analysis is demonstrated. As an application, analytical geometry diagrams of common PGTs are exhibited in the form of a list, whose kinematic characteristics and general evolution tendency are discussed. Then, with the mapping of PGTs onto the angular speed plane, the efficiency formula of analytical geometry, which has an extremely concise form, and a simple method for power flow estimation are put forward. Moreover, a general procedure is provided to analyze the efficiency and power flow. Finally, four numerical examples including a complicated eleven-link differential PGTs are given to illustrate the simpleness and intuitiveness of the analytical geometry method.