Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution ...Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution of ocean color satellites such as SeaWiFS and MODIS is usually -1 km, and therefore is not adequate for small, local-scale areas such as the Zhujiang (Pearl) River estuary. In contrast, 30 m-resolution EO-1 Hyperion imagery has potential for studying TSM in localized areas. We measured the surface spectral radiance reflectance of the river estuary water in the visible and near infra-red spectral range. Sensitivity analysis indicated that the ratio of remote sensing reflectance at 813 nm (Rrs(813)) to reflectance at 559 nm (Rrs(559)) could be used to estimate TSM concentration, and a linear relationship was established between the ratio and in-situ TSM concentration. We applied the linear relationship to Hyperion imagery to map TSM concentration in the estuary. The Hyperion imagery provided sufficient spatial resolution to detect spatiotemporal changes in TSM concentrations in the estuary small estuary area. This study demonstrated the usefulness of Hyperion imagery for mapping the distribution of TSM in estuary waters. Keyword: Hyperion; total suspended matter (TSM); Zhujiang (Pearl) River estuary展开更多
基金Supported by the National Natural Science Foundation of China(No. 40976106)the Science Foundation Program of Guangdong Ocean University (No. 1012339)the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics of Second Institute of Oceanography, SOA (No. SODE1203)
文摘Although remote sensing data have been used to estimate total suspended matter (TSM) in coastal waters, it has limitations when applied to estuary waters in low spatial resolution situations. The spatial resolution of ocean color satellites such as SeaWiFS and MODIS is usually -1 km, and therefore is not adequate for small, local-scale areas such as the Zhujiang (Pearl) River estuary. In contrast, 30 m-resolution EO-1 Hyperion imagery has potential for studying TSM in localized areas. We measured the surface spectral radiance reflectance of the river estuary water in the visible and near infra-red spectral range. Sensitivity analysis indicated that the ratio of remote sensing reflectance at 813 nm (Rrs(813)) to reflectance at 559 nm (Rrs(559)) could be used to estimate TSM concentration, and a linear relationship was established between the ratio and in-situ TSM concentration. We applied the linear relationship to Hyperion imagery to map TSM concentration in the estuary. The Hyperion imagery provided sufficient spatial resolution to detect spatiotemporal changes in TSM concentrations in the estuary small estuary area. This study demonstrated the usefulness of Hyperion imagery for mapping the distribution of TSM in estuary waters. Keyword: Hyperion; total suspended matter (TSM); Zhujiang (Pearl) River estuary