Surveying and early detection of invasive weeds are essential for strategic management and monitoring. Accordingly, a weed mapping was conducted during July 2011, against native (Orobanche ramosa, Cuscuta spp., Sorgh...Surveying and early detection of invasive weeds are essential for strategic management and monitoring. Accordingly, a weed mapping was conducted during July 2011, against native (Orobanche ramosa, Cuscuta spp., Sorghum halepense and Xanthium strumarium) and non native (Abutilon theophrasti, Datura stramonium, Solanum elaeagnifolium and Verbesina encelioide) weeds of Lebanon. A global positioning system (Garmin 2006) was used for precise waypoint, elevation, navigation and distance. The result of interviewing and interacting with the residents in 95 villages distributed between the Beq'aa and the North governorates of Lebanon, along with the observations made on the route, yielded the first detection of Abutilon theophrasti in both governorates. Solanum elaeagnifolium and Verbesina encelioide were not found in the agro-ecosystems of either governorates. This is the first report of the introduction ofAbutilon theophrasti in Lebanon and the establishment of a baseline data on weeds of Lebanon. The adoption of an integrated weed management program with a quarantine and control techniques and methods is needed to manage the spreading of weeds and to lessen their ability to adapt to a constantly changing system which uses several control practices.展开更多
The importance of water vapor in research of global climate change and weather forecast cannot be over emphasized; therefore substantial efforts have been made in exploring the optimal methods to measure water vapor. ...The importance of water vapor in research of global climate change and weather forecast cannot be over emphasized; therefore substantial efforts have been made in exploring the optimal methods to measure water vapor. It is well-established that with a conversion factor, zenith wet delays can be mapped onto precipitable water vapor (PWV). However, the determination of the exact conversion factor depends heavily on the accurate calculation of a key variable, weighted mean temperature of the trop- osphere (Tin). AS a critical parameter in Global Positioning System (GPS) meteorology, Tm has recently been modeled into a global grid known as GWMT. The GWMT model only requires the location and the day of year to calculate Tm. Despite the advantages that the GWMT model offers, anomalies still exist in oceanic areas due to low sampling resolution. In this study, we refine the GWMT model by incorporating the global Tm grid from Global Geodetic Observing System (GGOS) and obtain an improved model, GWMT-G. The results indicate that the GWMT-G model successfully addresses the anomaly in oceanic areas in the GWMT model and significantly improves the accuracy of Tm in other regions.展开更多
This paper presents the comprehensive results of landing site topographic mapping and rover localization in Chang’e-3 mission.High-precision topographic products of the landing site with extremely high resolutions(up...This paper presents the comprehensive results of landing site topographic mapping and rover localization in Chang’e-3 mission.High-precision topographic products of the landing site with extremely high resolutions(up to 0.05 m)were generated from descent images and registered to CE-2 DOM.Local DEM and DOM with 0.02 m resolution were produced routinely at each waypoint along the rover traverse.The lander location was determined to be(19.51256°W,44.11884°N,-2615.451 m)using a method of DOM matching.In order to reduce error accumulation caused by wheel slippage and IMU drift in dead reckoning,cross-site visual localization and DOM matching localization methods were developed to localize the rover at waypoints;the overall traveled distance from the lander is 114.8 m from cross-site visual localization and 111.2 m from DOM matching localization.The latter is of highest accuracy and has been verified using a LRO NAC image where the rover trajeactory is directly identifiable.During CE-3 mission operations,landing site mapping and rover localization products including DEMs and DOMs,traverse maps,vertical traverse profiles were generated timely to support teleoperation tasks such as obstacle avoidance and rover path planning.展开更多
To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consis...To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model,and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping(SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.展开更多
文摘Surveying and early detection of invasive weeds are essential for strategic management and monitoring. Accordingly, a weed mapping was conducted during July 2011, against native (Orobanche ramosa, Cuscuta spp., Sorghum halepense and Xanthium strumarium) and non native (Abutilon theophrasti, Datura stramonium, Solanum elaeagnifolium and Verbesina encelioide) weeds of Lebanon. A global positioning system (Garmin 2006) was used for precise waypoint, elevation, navigation and distance. The result of interviewing and interacting with the residents in 95 villages distributed between the Beq'aa and the North governorates of Lebanon, along with the observations made on the route, yielded the first detection of Abutilon theophrasti in both governorates. Solanum elaeagnifolium and Verbesina encelioide were not found in the agro-ecosystems of either governorates. This is the first report of the introduction ofAbutilon theophrasti in Lebanon and the establishment of a baseline data on weeds of Lebanon. The adoption of an integrated weed management program with a quarantine and control techniques and methods is needed to manage the spreading of weeds and to lessen their ability to adapt to a constantly changing system which uses several control practices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41174012, 41274022)the National High Technology Research and Development Program of China (Grant No. 2013AA122502)the Open Foundation of Key Laboratory of Precise Engineering and Industry Surveying of National Administration of Surveying, Mapping and Geoinformation (Grant Nos. PF2012-14, PF2013-12)
文摘The importance of water vapor in research of global climate change and weather forecast cannot be over emphasized; therefore substantial efforts have been made in exploring the optimal methods to measure water vapor. It is well-established that with a conversion factor, zenith wet delays can be mapped onto precipitable water vapor (PWV). However, the determination of the exact conversion factor depends heavily on the accurate calculation of a key variable, weighted mean temperature of the trop- osphere (Tin). AS a critical parameter in Global Positioning System (GPS) meteorology, Tm has recently been modeled into a global grid known as GWMT. The GWMT model only requires the location and the day of year to calculate Tm. Despite the advantages that the GWMT model offers, anomalies still exist in oceanic areas due to low sampling resolution. In this study, we refine the GWMT model by incorporating the global Tm grid from Global Geodetic Observing System (GGOS) and obtain an improved model, GWMT-G. The results indicate that the GWMT-G model successfully addresses the anomaly in oceanic areas in the GWMT model and significantly improves the accuracy of Tm in other regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.41201480,41171355 and 41301528)the Key Research Program of the Chinese Academy of Sciences(Grant No.KGZD-EW-603)
文摘This paper presents the comprehensive results of landing site topographic mapping and rover localization in Chang’e-3 mission.High-precision topographic products of the landing site with extremely high resolutions(up to 0.05 m)were generated from descent images and registered to CE-2 DOM.Local DEM and DOM with 0.02 m resolution were produced routinely at each waypoint along the rover traverse.The lander location was determined to be(19.51256°W,44.11884°N,-2615.451 m)using a method of DOM matching.In order to reduce error accumulation caused by wheel slippage and IMU drift in dead reckoning,cross-site visual localization and DOM matching localization methods were developed to localize the rover at waypoints;the overall traveled distance from the lander is 114.8 m from cross-site visual localization and 111.2 m from DOM matching localization.The latter is of highest accuracy and has been verified using a LRO NAC image where the rover trajeactory is directly identifiable.During CE-3 mission operations,landing site mapping and rover localization products including DEMs and DOMs,traverse maps,vertical traverse profiles were generated timely to support teleoperation tasks such as obstacle avoidance and rover path planning.
基金National Natural Science Foundation of China(61305107,U1333109)the Fundamental Research Funds for the Central Universities(3122016B006)the Scientific Research Funds for Civil Aviation University of China(2012QD23X)
文摘To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model,and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping(SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.