The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)in...The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%.展开更多
The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn and Mg-6Zn-1Mn-4Sn-0.5Y alloys under extrusion and T6 aging conditions were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning ...The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn and Mg-6Zn-1Mn-4Sn-0.5Y alloys under extrusion and T6 aging conditions were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM) and tensile test. The results show that Y element refines the grains and improves the comprehensive mechanical properties of ZMT614-0.5Y both in as-extruded and T6 states. The phase compositions of Mg-6Zn-1Mn-4Sn-0.5Y are α-Mg, Mg Zn2, Mn, Mg2 Sn and Mg Sn Y phases. After T6 treatment, the ultimate tensile strength(UTS) and yield strength(YS) increase while the elongation decreases severely. For both of these alloys, the theoretical results combined with the experimental values demonstrate that the grain boundary strengthening and solid solution strengthening play an important role in enhancing the YS in the as-extruded state, while the precipitation strengthening is the key factor for the enhancement of YS in the T6 state.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
The extrusion preform of the spray-formed5A12Al alloy was hot rolled using high reduction rolling technology.By means of transmission electron microscopy(TEM),electron backscatter diffraction(EBSD)and energy dispersiv...The extrusion preform of the spray-formed5A12Al alloy was hot rolled using high reduction rolling technology.By means of transmission electron microscopy(TEM),electron backscatter diffraction(EBSD)and energy dispersive spectroscopy(EDS),the microstructure evolution was studied and the strengthening and toughening mechanism was thereby proposed.The results indicate that discontinuous and continuous dynamic recrystallization occurred during the hot rolling deformation of the spray-formed5A12Al alloy.The grain size was significantly refined and the micro-scale grains formed.Partial dynamic recrystallization leads to a significant increase of dislocation density and cellular structure.The Mg atoms were distributed in the Al matrix mainly in the presence of solid solution rather than the formation of precipitate.High solid solution of Mg atoms not only hindered the dislocation motion and increased the density of dislocation,but also exhibited a remarkable solid solution strengthening effect,which contributes to the high strength and high toughness of the as-rolled sheets.The tensile strength and elongation of spray formed5A12Al alloy at room temperature after3passes hot rolling were622MPa and20%,respectively.展开更多
AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments o...AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h.展开更多
Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The micro...Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools.展开更多
To obtain a balance between strength and ductility in NiFeCoCrMn high-entropy alloy, the degree of dislocation strengthening was tuned via partial recrystallization during traditional thermomechanical processing(cold ...To obtain a balance between strength and ductility in NiFeCoCrMn high-entropy alloy, the degree of dislocation strengthening was tuned via partial recrystallization during traditional thermomechanical processing(cold rolling and recrystallization). The tensile properties in each state were then examined. Significant improvements in uniform elongation and work hardening rate, with decrease in yield strength and ultimate tensile strength, are associated with increase in the recrystallized fraction, i.e., reductions in the degree of strain hardening. In particular, recrystallized fractions of 37% and 74% are obtained by annealing at 650 ℃ for 10 min and 15 min, respectively, which results in yield strengths of 1003 MPa and 742 MPa and uniform elongations of 4% and 24%, respectively. The strengthening is due to the unrecrystallized grains with a high density of dislocations, whereas the ductility benefits from the presence of recrystallized strain-free grains.展开更多
Mg-6%Al, Mg-5%Pb and Mg-6%Al-5%Pb (mass fraction) alloys were prepared by induction melting with the protection of argon atmosphere. Their electrochemical activations in different electrolyte solutions were investig...Mg-6%Al, Mg-5%Pb and Mg-6%Al-5%Pb (mass fraction) alloys were prepared by induction melting with the protection of argon atmosphere. Their electrochemical activations in different electrolyte solutions were investigated by galvanostatic test. The microstructures of these alloys and their corroded surfaces were studied by scanning electron microscopy, X-ray diffractometry and emission spectrum analysis. The results show that the activation of magnesium is not prominent when only aluminum or lead exists in the magnesium matrix, but the coexistence of the two elements can increase the activation. The activation mechanism of Mg-Al-Pb alloy is dissolving-reprecipitating and there is a synergistic effect between aluminium and lead: the precipitated lead oxides on the surface of the alloy can facilitate the precipitation of Al(OH)3, which can peel the Mg(OH)2 film in the form of 2Mg(OH)2AI(OH)3 and activate the magnesium matrix.展开更多
Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied fr...Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites.展开更多
The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron m...The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.展开更多
The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized...The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.展开更多
Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined ...Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.展开更多
The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time...The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time observations show the tungsten tip ‘swallow' carbon atoms of the FLG and ‘spit' graphite shells at its surface. The tip was carbonized to tungsten carbide(WC, W_2 C and WC_x) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WCx-W contact, which results in significant improvement on electrical conductivity at the interface.展开更多
基金Financial supports from the National Natural Science Foundation of China (No.52071343)the Leading Innovation and Entrepreneurship Team of Zhejiang Province,China—Automotive Light Alloy Innovation Team (No.2022R01018)are gratefully acknowledged。
文摘The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%.
基金Project(2013CB632200)supported by National Basic Research Program of ChinaProject(2010DFR50010)supported by International Scientific and Technological Cooperation Program of Ministry of Science and Technology of ChinaProject supported by Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn and Mg-6Zn-1Mn-4Sn-0.5Y alloys under extrusion and T6 aging conditions were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM) and tensile test. The results show that Y element refines the grains and improves the comprehensive mechanical properties of ZMT614-0.5Y both in as-extruded and T6 states. The phase compositions of Mg-6Zn-1Mn-4Sn-0.5Y are α-Mg, Mg Zn2, Mn, Mg2 Sn and Mg Sn Y phases. After T6 treatment, the ultimate tensile strength(UTS) and yield strength(YS) increase while the elongation decreases severely. For both of these alloys, the theoretical results combined with the experimental values demonstrate that the grain boundary strengthening and solid solution strengthening play an important role in enhancing the YS in the as-extruded state, while the precipitation strengthening is the key factor for the enhancement of YS in the T6 state.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
基金Project(2017JJ2073) supported by the Natural Science Foundation of Hunan Province,ChinaProject(15B063) supported by the Youth Research Foundation of Education Bureau of Hunan Province,China
文摘The extrusion preform of the spray-formed5A12Al alloy was hot rolled using high reduction rolling technology.By means of transmission electron microscopy(TEM),electron backscatter diffraction(EBSD)and energy dispersive spectroscopy(EDS),the microstructure evolution was studied and the strengthening and toughening mechanism was thereby proposed.The results indicate that discontinuous and continuous dynamic recrystallization occurred during the hot rolling deformation of the spray-formed5A12Al alloy.The grain size was significantly refined and the micro-scale grains formed.Partial dynamic recrystallization leads to a significant increase of dislocation density and cellular structure.The Mg atoms were distributed in the Al matrix mainly in the presence of solid solution rather than the formation of precipitate.High solid solution of Mg atoms not only hindered the dislocation motion and increased the density of dislocation,but also exhibited a remarkable solid solution strengthening effect,which contributes to the high strength and high toughness of the as-rolled sheets.The tensile strength and elongation of spray formed5A12Al alloy at room temperature after3passes hot rolling were622MPa and20%,respectively.
基金Project (201602548) supported by Liaoning Province Natural Science Foundation,ChinaProject (1711800) supported by Shenyang Science and Technology Plan,China+1 种基金Project (LQGD2017032) supported by Youth Project of Liaoning Education Department,ChinaProjects (51504153,51571145) supported by the National Natural Science Foundation of China
文摘AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h.
基金supported by Key Development Project of Sichuan Province(Grant No.2017GZ0399)。
文摘Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools.
基金sponsored by the National Natural Science Foundation of China (Nos. 51301123, 51971099)the open funds of State Key Laboratory of Materials Processing and Die & Mould Technology, China (No. P2019-005)。
文摘To obtain a balance between strength and ductility in NiFeCoCrMn high-entropy alloy, the degree of dislocation strengthening was tuned via partial recrystallization during traditional thermomechanical processing(cold rolling and recrystallization). The tensile properties in each state were then examined. Significant improvements in uniform elongation and work hardening rate, with decrease in yield strength and ultimate tensile strength, are associated with increase in the recrystallized fraction, i.e., reductions in the degree of strain hardening. In particular, recrystallized fractions of 37% and 74% are obtained by annealing at 650 ℃ for 10 min and 15 min, respectively, which results in yield strengths of 1003 MPa and 742 MPa and uniform elongations of 4% and 24%, respectively. The strengthening is due to the unrecrystallized grains with a high density of dislocations, whereas the ductility benefits from the presence of recrystallized strain-free grains.
文摘Mg-6%Al, Mg-5%Pb and Mg-6%Al-5%Pb (mass fraction) alloys were prepared by induction melting with the protection of argon atmosphere. Their electrochemical activations in different electrolyte solutions were investigated by galvanostatic test. The microstructures of these alloys and their corroded surfaces were studied by scanning electron microscopy, X-ray diffractometry and emission spectrum analysis. The results show that the activation of magnesium is not prominent when only aluminum or lead exists in the magnesium matrix, but the coexistence of the two elements can increase the activation. The activation mechanism of Mg-Al-Pb alloy is dissolving-reprecipitating and there is a synergistic effect between aluminium and lead: the precipitated lead oxides on the surface of the alloy can facilitate the precipitation of Al(OH)3, which can peel the Mg(OH)2 film in the form of 2Mg(OH)2AI(OH)3 and activate the magnesium matrix.
文摘Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites.
基金Project (2016B090931004) supported by the Scientific and Research Plan of Guangdong Province, ChinaProject (51601229) supported by the National Natural Science Foundation of China。
文摘The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.
基金Projects(51671217,51604112) supported by the National Natural Science Foundation of ChinaProject(2017JJ3089) supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.
基金supported by the National Natural Science Foundation of China (Nos. 51674166, U1902220)the National Key R&D Program of China (No. 2021YFB3701303)。
文摘Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.
基金supported by the Program from Ministry of Science and Technology(Grant Nos.2012CB933003,2013CB932600,2013CB934500&2013YQ16055107)the National Natural Science Foundation of China(Grant Nos.11474337,221322304,51172273&51421002)Strategic Priority Research Program B of the Chinese Academy of Sciences of China(Grant No.XDB07030100)
文摘The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time observations show the tungsten tip ‘swallow' carbon atoms of the FLG and ‘spit' graphite shells at its surface. The tip was carbonized to tungsten carbide(WC, W_2 C and WC_x) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WCx-W contact, which results in significant improvement on electrical conductivity at the interface.