期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
用改进的显式差分法解拟均相二维模型的基础设计方程 被引量:1
1
作者 朱红星 《化工设计通讯》 CAS 1989年第4期62-65,共4页
本文采用改进的显示差分法求解拟均相二维模型的基础方程式。在求靠近管壁处温度时不用h_w和T_w。该种方法所用参数少,计算过程简单。文程对“模型方程”进行了论述;时“改进显示差分方程的建立”进行了演算。
关键词 显式差分方程 模型 反应组分
下载PDF
高阶抛物型方程的一个显式差分格式
2
作者 单双荣 曾文平 《漳州师范学院学报(自然科学版)》 2001年第3期6-10,共5页
本文构造了一个求解高阶抛物型方程 mmmxutu221/)1(/-=+ 的一个无条件稳定的三层显式格式,并用数值例子说明对稳定性所作的分析是正确的.
关键词 高阶抛物型方程 差分 稳定性.
下载PDF
四维热传导方程的一族两层显格式 被引量:2
3
作者 马明书 马小霞 《工程数学学报》 CSCD 北大核心 2007年第2期254-258,共5页
构造了解四维热传导方程的一族两层显格式,证明了当截断误差为O(△t+△x2)时,其稳定性条件为网比r=△t/△x2=△t/△y2=△t/△z2=△t/△w2≤11/24优于同类的其他显格式,当截断误差阶为O(△t2+△x4)时,此格式为一个简洁而实用的高精度... 构造了解四维热传导方程的一族两层显格式,证明了当截断误差为O(△t+△x2)时,其稳定性条件为网比r=△t/△x2=△t/△y2=△t/△z2=△t/△w2≤11/24优于同类的其他显格式,当截断误差阶为O(△t2+△x4)时,此格式为一个简洁而实用的高精度两层显格式。 展开更多
关键词 四维热传导方程:差分:截断误差:稳定性
下载PDF
An Explicit Difference Scheme with High Accuracy and Branching Stability for Solving Parabolic Partial Differential Equation 被引量:4
4
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期98-103,共6页
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△... This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2. 展开更多
关键词 parabolic type equation explicit difference scheme high accuracy branching stability truncation er
下载PDF
A Family of High_order Accuracy Explicit Difference Schemes for Solving 2-D Parabolic Partial Differential Equation 被引量:4
5
作者 任宗修 陈贞忠 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第3期57-61,共5页
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx... A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4). 展开更多
关键词 D parabolic P.D.E high_order accuracy explic it difference scheme
下载PDF
Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov-Kuznetsov Equation 被引量:9
6
作者 孙峪怀 马志民 李燕 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第9期397-400,共4页
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutio... The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations. 展开更多
关键词 generalized nonlinear Zakharov-Kuznetsov equation improved generalized auxiliary differentialequation and exact solutions
下载PDF
Asymptotic Solution for Coupled Heat and Mass Transfer During the Solidification of High Water Content Materials
7
作者 齐德瑄 何凯 +1 位作者 杜如虚 张义同 《Transactions of Tianjin University》 EI CAS 2010年第4期239-243,共5页
This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governin... This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governing equations can be approached by Taylor polynomials unlimitedly, which leads to the simplification of governing equations. The unknown functions involved in governing equations can then be approximated by Chebyshev polynomials. The coefficients of Chebyshev polynomials are determined and an asymptotic solution is obtained. With the asymptotic solution, the dehydration and freezing fronts of materials are evaluated easily, and are consistent with numerical results obtained by using an explicit finite difference method. 展开更多
关键词 heat transfer mass transfer SOLIDIFICATION asymptotic analysis
下载PDF
A Class of Two-level High-order Accuracy Explicit Difference Scheme for Solving 3-D Parabolic Partial Differential Equation
8
作者 WANG Tong-ke,MA Ming-shu,REN Zong-xiu (College of Mathematics and Information Science, Henan Normal University,Xinxiang 453002,China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第1期17-20,共4页
A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
关键词 D parabolic P.E.E. explicit difference scheme truncation error
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部