The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc...The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data.展开更多
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a...Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.展开更多
Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure...Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.展开更多
A new solvent extraction system of Au by surfactant CTMAB-TBP-inert diluent-Au(CN)-2-H2O was investigated and established. The infrared spectra and the conductivities of loaded organic phases containing (Au) were ...A new solvent extraction system of Au by surfactant CTMAB-TBP-inert diluent-Au(CN)-2-H2O was investigated and established. The infrared spectra and the conductivities of loaded organic phases containing (Au) were recorded stage by stage. It was reported that in the presence of salting-out agents the pencent extraction of Au decreased, and the conversion of emulsions from W/O to O/W happened in the extraction processed. The results demonstrate that the extraction process of Au(CN)-2 is carried out by two steps. First, an associated molecule between CTMA+ and TBP, as (C16H33)(CH3)3N+·H2O·OP(OC4H9)3, is formed by dint of water molecule, then it will pull Au(CN)-2 into the organic phase based on the electro-neutrality.展开更多
The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), ...The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature.展开更多
TIG welding experiments of TC2 titanium alloy sheet was carried out,and the well-formed weld was obtained.After welding process,the cross-section microstructure,mechanical properties,fracture morphology and quality in...TIG welding experiments of TC2 titanium alloy sheet was carried out,and the well-formed weld was obtained.After welding process,the cross-section microstructure,mechanical properties,fracture morphology and quality inspection of the joint were studied.The results show that the microstructure of the weld consists of a large number of acicularα′andβblock.The microhardness curve shows that the microhardness value in the fusion zone(FZ)of the joint is significantly higher than that in the heat affected zone(HAZ)and the base metal(BM),and the microhardness of the base metal is the lowest.The tensile strength of the joint is equivalent to that of the base metal,and the fracture morphology shows that the fracture mechanism of the joint is mixed ductile-brittle fracture mode.The weld quality is excellent through chemical inspection,penetrant inspection and X-ray inspection.展开更多
ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstruct...ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstructure of the varistor ceramics. A DC parameter instrument was applied to investigate the electronic properties and V-I characteristics. The XRD analysis of Eu2O3-doped ZnO-Bi2O3-based varistor ceramics shows that the ZnO, Eu-containing Bi-rich, Zn7Sb2O12-type spinel and Zn2Bi3Sb3O14-type which is the pyrochlore phase are present. With increasing Eu2O3 content, the average size of ZnO grain firstly decreases and then increases. The grain boundary defect model was particularly used to explain the excellent nonlinearity of ZnO-Bi2O3-based varistor ceramics with the addition of0.1% Eu2O3 and sintered at 950 ℃.展开更多
Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite's slag as materials. The results show that the spinel phase of Ni0.5Zn0....Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite's slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 ℃) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200℃ is ln[-ln(1-x)] =-0.78+0.951n t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials.展开更多
The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron...The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron microscopy and X-ray diffractometer.The results show that addition of 0.17% (mass fraction) Yb increases the density of θ' particles of the 2519A alloy plate and reduces the coarsening speed rate of θ' phase at 300 ℃.Therefore,tensile strength is enhanced from 483.2 MPa to 501.0 MPa at room temperature and is improved from 139.5 MPa to 169.4 MPa at 300 ℃.The results also show that with the addition of 0.30% (mass fraction) Yb,the mechanical properties increase at 300 ℃ and decrease at room temperature.With Yb additions,the Al7.4Cu9.6Yb2 phase is found whilst the segregated phases of as-cast alloys along grain boundaries become discontinuous,thin and spheroidized.展开更多
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal...In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.展开更多
Spinel structure Zn2SnO4 was successfully synthesized by microwave-assisted hydrothermal process. The effects of the microwave power on the formation and physical properties of the Zn2SnO4 particles are discussed. The...Spinel structure Zn2SnO4 was successfully synthesized by microwave-assisted hydrothermal process. The effects of the microwave power on the formation and physical properties of the Zn2SnO4 particles are discussed. The products were characterized by X-ray diffraction, atomic force microscopy, infrared spectroscopy, and N2 adsorption. The results indicated that the microwave power had important influence on the formation of the spinel phase. The results also revealed that the physical properties of Zn2SnO4 particles did not change with the increase of the microwave power above 600 W, with 20 min of reaction time. Furthermore, the photocatalytic activity of the Zn2SnO4 particles for the phenol degradation under sunlight was also investigated.展开更多
To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots....To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots.In order to fix the hard powders to the surface of the workpiece,the powders were set on an uneven surface.To easily facilitate fixing of powders,lining of the workpiece with the powder sandwiched between two aluminum foil sheets was also attempted.In this experiment,a centrifugal shot peening machine with an electrical heater was employed.The workpieces were magnesium alloys AZ31B and AZ91D,and the hard powders were commercial cemented carbide,alumina,and zirconia.The joinability of hard powders near the lined surface was observed by a optical microscope.The wear resistance was also evaluated by a wear test.The hard powders were successfully bonded to the surface of workpieces by the shot lining process.The results show that the present method is effective in wear resistance of the magnesium alloys.展开更多
Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process follo...Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process followed by one‐step hydrothermal treatment. Addition of polymer during hydrothermal treatment resulted in nanodisk and nanoflower morphologies. The morphology, microstructure and chemical composition of thin films prepared under different conditions were examined by field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD) and Raman spectroscopy. The XRD and FE‐SEM investigations confirmed that the GZO nanodisks, na‐norods and nanoflowers formed on the AlN/Si substrates were all wurtzite phase. Green fluorescent protein (GFP) was immobilized on the as‐synthesized GZO nanostructured materials by a dipping process. Atomic force microscopy (AFM) and fluorescence spectroscopy measurements were con‐ducted to confirm the surface binding nature of GFP on the GZO nanostructures to determine their suitability for use in sensor applications and bioimaging techniques. Trace‐level addition of GFP to the GZO nanostructures resulted in a fluorescence response, revealing good activity for ultraviolet light sensor applications.展开更多
β-Glucans are biomacromolecules that present biological properties of medical and pharmacological interest, The chemical modification of the primary structure of these carbohydrate biopolymers is a way to enhance or ...β-Glucans are biomacromolecules that present biological properties of medical and pharmacological interest, The chemical modification of the primary structure of these carbohydrate biopolymers is a way to enhance or achieve new biological properties. Acetylated derivatives of (1→6)-β-D-glucan (lasiodiplodan) with different degrees of substitution (0.48, 0.66, 1.03 and 1.26) were obtained and characterized by infra-red and NMR (nuclear magnetic resonance) spectroscopy, thermal analysis, X-ray diffraction and antioxidant capacity. Acetylation was confirmed by FT-IR, and βC NMR spectroscopy. Thermal analysis indicated that unmodified lasiodiplodan and the O-acetylated β-glucan derivative of degree of substitution 0.48 presented three stages of mass-loss, whereas acetylated derivatives of DS (degree of substitution) of 0.66, 1.03 and 1.26 presented four stages of mass-loss. X-ray diffractograms demonstrated that both native and acetylated lasiodiplodan presented crystalline regions in an amorphous polymeric matrix. Scanning electron microscopy revealed that O-acetylation promoted morphologic changes in the biopolymer according to the DS. Acetylation also contributed to improve antioxidant capacity.展开更多
In order to explain the formation process of slope hazards, and to identify the key factors leading to instability of a slope, Emeishan basalt saprolite in vadose zones of the Touzhai landslide in Zhaotong, Yunnan, wa...In order to explain the formation process of slope hazards, and to identify the key factors leading to instability of a slope, Emeishan basalt saprolite in vadose zones of the Touzhai landslide in Zhaotong, Yunnan, was studied. The formation and evolution of Emeishan basalt saprolite was examined using, amongst other techniques, field investigations,thin section analysis, scanning electron microscopy(SEM) observations, chemical analysis, physical and water-physical property tests of rock masses. Field observations revealed that the majority of the weathered rock blocks were presented as a concentric layer structure in which an internal corestone was enveloped with several layers of external saprolized crust. Chemical and mineralogical analysis identified that iron was the most sensitive element and that the weathering progress usually started with the oxidation of Fe2+ to Fe3+ in rock blocks. Alkaline elements such as Si, Ca, Mg, Na and K were also dissolved and Fe and Al were concentrated in saprolized crusts. Results indicated that loss on ignition(LOI) also increased significantly. SEM results showed that the weathering intensity of thebasalt blocks decreased gradually from the outside to the inside, and the mineral morphology significantly differed on both sides of the weathering front. The saprolized crusts presented cellular microstructure features due to the generation of micropore and clay minerals. Thin section analysis showed that plagioclase was relatively more stable than pyroxene and chlorite during weathering. With a centripetal propagation of the weathering front, saprolized crusts became thicker and corestones became smaller; fresh Emeishan basalt blocks gradually turned into saprolized blocks. Due to the loose structure and low strength of saprolite, the quality of the Emeishan basalt mass significantly deteriorated, this being a potentially important factor which caused the Touzhai landslide to occur.展开更多
This paper relates to highly dispersed supported Pd/MWCNTs and Fd/a-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts pre...This paper relates to highly dispersed supported Pd/MWCNTs and Fd/a-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts prepared by bio- logical reduction method and chemical method, respectively, were investigated using XRD, TEM and specific surface char- acterization methods. The catalytic properties of catalysts were studied through activity evaluation means. The test results showed that the catalysts prepared by biological method were characteristic of small Pd nanoparticle size, good dispersion and low agglomeration, while possessing a high activity and stability in styrene hydrogenation reaction in comparison with catalysts prelgared via the chemical method.展开更多
Grout plays an important role in the transmission and maintenance of anchoring force,and in the protection of anchorage materials against corrosion.Thus,the hardening characteristics of grout directly affect the ancho...Grout plays an important role in the transmission and maintenance of anchoring force,and in the protection of anchorage materials against corrosion.Thus,the hardening characteristics of grout directly affect the anchoring effectivity and long-term reliability.We have excavated a prestressed anchorage which has been in service for 20 years,and have tested the grout which has worked for that long period under complicated geological conditions through strength tests and have analyzed its mineral composition using scanning electron microscopy(SEM) and X-ray diffraction(XRD).The results show that the mineral composition of the 12.5 m segment differs from other segments,and corresponds with poor coagulation characteristics of the 12.5 m segment grout.Analysis shows that unhydrated tricalcium silicate may be the reason for the localized poor coagulation.展开更多
Transmission electron microscopy and surface- and bulk-sensitive spectroscopic methods were used to study the morphology and the electronic structure of a hybrid organic-inorganic system composed of gold nanoparticles...Transmission electron microscopy and surface- and bulk-sensitive spectroscopic methods were used to study the morphology and the electronic structure of a hybrid organic-inorganic system composed of gold nanoparticles (NP's) which were distributed in an organic matrix. Au atoms deposited onto a copper phthalocyanine (CuPc) surface diffuse into the organic matrix and self-assemble in well defined NP's with metallic properties. No formation of a continuous metallic Au film on top of the CuPc film is observed up to nominal coverages as large as 130 A.展开更多
Highly efficient synthesis methods have been developed and characteristics of nanometallocarbosilanes molecular structure were studied by the research team of GNIIChTEOS (State Research Institute for Chemistry and Te...Highly efficient synthesis methods have been developed and characteristics of nanometallocarbosilanes molecular structure were studied by the research team of GNIIChTEOS (State Research Institute for Chemistry and Technology of Organoelement Compounds). Nanometallocarbosilanes were synthesized by thermal co-condensation of oligocarbosilanes and alkyl amides of refractory metals. Initial, intermediate and final products of side reactions were characterized by 1H, 13C, 29Si NMR (nuclear magnetic resonance), IR (infra-red) spectroscopy, GPC (gel-penetrating chromatography), TGA (thermal gravimetric analysis), TEM (transmission electron microscopy), SEM (scanning electron microscopy), RES (X-ray phase analysis) and elemental analysis. The proposed synthesis method of nanometallocarbosilanes was lbund to produce fusable soluble organosilicon oligomers with homogeneous distribution of nanoscale (10-20 nm) metal particles in the oligomer matrix. A computational model of the group and elemental composition of nanometallocarbosilanes was developed; it was shown that they are molecular globules of near-spherical shape and rigid polycyclic structure. Thermochemical treatment of nanometallocarbosilanes leads to SiC-nanoceramics (a high yield of up to 75-80 mass%) modified by metal nanoparticles (20-30 nm) contributing to its stabilization. The application of preceramic oxygen-free nanometallocarbosilanes will make it possible to advance in solving the problem of ceramic composite materials with long-term resistance at temperatures above 1,500 ℃ in oxidizing environments.展开更多
Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were ch...Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were characterized by BET (Brunauer Emmett Teller), XRD (X-ray diffractometer), SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) to understand the surface area, phase, structure, morphology and electrical conductivity of the respective electrode material. The surface area was obtained as 2.312 m2"g"l and 0.892 m2"g"1, respectively for 12% of activated carbon in the expander of negative and 0.70% of TiO2 (Titanium dioxide) in the PAM (positive active material). The structural analysis reveals an increase in the tetrabasic lead sulfate and also evidenced by well grown crystals in the PAM with the TiO2, respectively obtained by XRD and SEM techniques. The impedance spectra analysis shows an increase of electrical conductivity of negative active mass with temperature. The battery results showing two fold enhancements in the charge acceptance were attributed to the high surface area activated carbon in the NAM (negative active material). The materials properties of electrodes and their influence on the battery performance were discussed.展开更多
基金Project (50971087) supported by the National Natural Science Foundation of ChinaProject (11JDG070) supported by the Senior Talent Research Foundation of Jiangsu University, China
文摘The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data.
基金Project (09C26279200863) supported by Technology Innovation Fund Project of High-tech Small and Medium Enterprises,Ministry of Science and Technology of ChinaProject (BA2011084) supported by Special Fund Project on Science and Technology Achievement Transformation of Jiangsu Province,China
文摘Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses.
基金Projects(2010A090200078,2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.
基金Project(29876016) supported by the National Natural Science Foundation of China Project(9808K) supported by theYunnan Peking University Research and Development Cooperation Foundation
文摘A new solvent extraction system of Au by surfactant CTMAB-TBP-inert diluent-Au(CN)-2-H2O was investigated and established. The infrared spectra and the conductivities of loaded organic phases containing (Au) were recorded stage by stage. It was reported that in the presence of salting-out agents the pencent extraction of Au decreased, and the conversion of emulsions from W/O to O/W happened in the extraction processed. The results demonstrate that the extraction process of Au(CN)-2 is carried out by two steps. First, an associated molecule between CTMA+ and TBP, as (C16H33)(CH3)3N+·H2O·OP(OC4H9)3, is formed by dint of water molecule, then it will pull Au(CN)-2 into the organic phase based on the electro-neutrality.
基金Project (51412020304QT7106) supported by the National Defense Pre-investigation Foundation of ChinaProject(2003AA741043) supported by the National High-Tech Research and Development Program of ChinaProject(5133001E) supported by the State Key Fundamental Research and Development Program of China
文摘The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature.
基金the Priority Academic Program Development of Jiangsu Higher Education Institution and Beijing Institute of Aeronautical Materials(No.KZ82171509).
文摘TIG welding experiments of TC2 titanium alloy sheet was carried out,and the well-formed weld was obtained.After welding process,the cross-section microstructure,mechanical properties,fracture morphology and quality inspection of the joint were studied.The results show that the microstructure of the weld consists of a large number of acicularα′andβblock.The microhardness curve shows that the microhardness value in the fusion zone(FZ)of the joint is significantly higher than that in the heat affected zone(HAZ)and the base metal(BM),and the microhardness of the base metal is the lowest.The tensile strength of the joint is equivalent to that of the base metal,and the fracture morphology shows that the fracture mechanism of the joint is mixed ductile-brittle fracture mode.The weld quality is excellent through chemical inspection,penetrant inspection and X-ray inspection.
基金Projects(BK2011243,BK2012156) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(20123227120021) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China+3 种基金Project(KFJJ201105) supported by the Opening Project of State key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject(10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province,ChinaProject(13KJB430006) supported by the Application Program for Basic Research of Changzhou,ChinaProject supported by the Industrial Center of Jiangsu University Undergraduate Practice-Innovation Training Project,China
文摘ZnO-Bi2O3-based varistor ceramics doped with EU2O3 in a range from 0 to 0.4% were obtained by high-energy ball milling and fired at 900-1000 ℃ for 2 h. XRD and SEM were applied to determine the phases and microstructure of the varistor ceramics. A DC parameter instrument was applied to investigate the electronic properties and V-I characteristics. The XRD analysis of Eu2O3-doped ZnO-Bi2O3-based varistor ceramics shows that the ZnO, Eu-containing Bi-rich, Zn7Sb2O12-type spinel and Zn2Bi3Sb3O14-type which is the pyrochlore phase are present. With increasing Eu2O3 content, the average size of ZnO grain firstly decreases and then increases. The grain boundary defect model was particularly used to explain the excellent nonlinearity of ZnO-Bi2O3-based varistor ceramics with the addition of0.1% Eu2O3 and sintered at 950 ℃.
基金Project(50204001) supported by the National Natural Science Foundation of China
文摘Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite's slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 ℃) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200℃ is ln[-ln(1-x)] =-0.78+0.951n t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron microscopy and X-ray diffractometer.The results show that addition of 0.17% (mass fraction) Yb increases the density of θ' particles of the 2519A alloy plate and reduces the coarsening speed rate of θ' phase at 300 ℃.Therefore,tensile strength is enhanced from 483.2 MPa to 501.0 MPa at room temperature and is improved from 139.5 MPa to 169.4 MPa at 300 ℃.The results also show that with the addition of 0.30% (mass fraction) Yb,the mechanical properties increase at 300 ℃ and decrease at room temperature.With Yb additions,the Al7.4Cu9.6Yb2 phase is found whilst the segregated phases of as-cast alloys along grain boundaries become discontinuous,thin and spheroidized.
基金Project(51172287)supported by the National Natural Science Foundation of ChinaProject(2012-2013)supported by the Laboratory Research Fund of the State Key Laboratory of Powder Metallurgy,China
文摘In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.
文摘Spinel structure Zn2SnO4 was successfully synthesized by microwave-assisted hydrothermal process. The effects of the microwave power on the formation and physical properties of the Zn2SnO4 particles are discussed. The products were characterized by X-ray diffraction, atomic force microscopy, infrared spectroscopy, and N2 adsorption. The results indicated that the microwave power had important influence on the formation of the spinel phase. The results also revealed that the physical properties of Zn2SnO4 particles did not change with the increase of the microwave power above 600 W, with 20 min of reaction time. Furthermore, the photocatalytic activity of the Zn2SnO4 particles for the phenol degradation under sunlight was also investigated.
文摘To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots.In order to fix the hard powders to the surface of the workpiece,the powders were set on an uneven surface.To easily facilitate fixing of powders,lining of the workpiece with the powder sandwiched between two aluminum foil sheets was also attempted.In this experiment,a centrifugal shot peening machine with an electrical heater was employed.The workpieces were magnesium alloys AZ31B and AZ91D,and the hard powders were commercial cemented carbide,alumina,and zirconia.The joinability of hard powders near the lined surface was observed by a optical microscope.The wear resistance was also evaluated by a wear test.The hard powders were successfully bonded to the surface of workpieces by the shot lining process.The results show that the present method is effective in wear resistance of the magnesium alloys.
基金supported by King Saud University, Vice Deanship of Research Chairs
文摘Nanostructured gallium‐doped zinc oxide (GZO) thin films were fabricated on piezoelectric sub‐strates. The GZO thin films with nanodisk/nanoflower morphologies were prepared by a simple spin‐coating process followed by one‐step hydrothermal treatment. Addition of polymer during hydrothermal treatment resulted in nanodisk and nanoflower morphologies. The morphology, microstructure and chemical composition of thin films prepared under different conditions were examined by field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD) and Raman spectroscopy. The XRD and FE‐SEM investigations confirmed that the GZO nanodisks, na‐norods and nanoflowers formed on the AlN/Si substrates were all wurtzite phase. Green fluorescent protein (GFP) was immobilized on the as‐synthesized GZO nanostructured materials by a dipping process. Atomic force microscopy (AFM) and fluorescence spectroscopy measurements were con‐ducted to confirm the surface binding nature of GFP on the GZO nanostructures to determine their suitability for use in sensor applications and bioimaging techniques. Trace‐level addition of GFP to the GZO nanostructures resulted in a fluorescence response, revealing good activity for ultraviolet light sensor applications.
文摘β-Glucans are biomacromolecules that present biological properties of medical and pharmacological interest, The chemical modification of the primary structure of these carbohydrate biopolymers is a way to enhance or achieve new biological properties. Acetylated derivatives of (1→6)-β-D-glucan (lasiodiplodan) with different degrees of substitution (0.48, 0.66, 1.03 and 1.26) were obtained and characterized by infra-red and NMR (nuclear magnetic resonance) spectroscopy, thermal analysis, X-ray diffraction and antioxidant capacity. Acetylation was confirmed by FT-IR, and βC NMR spectroscopy. Thermal analysis indicated that unmodified lasiodiplodan and the O-acetylated β-glucan derivative of degree of substitution 0.48 presented three stages of mass-loss, whereas acetylated derivatives of DS (degree of substitution) of 0.66, 1.03 and 1.26 presented four stages of mass-loss. X-ray diffractograms demonstrated that both native and acetylated lasiodiplodan presented crystalline regions in an amorphous polymeric matrix. Scanning electron microscopy revealed that O-acetylation promoted morphologic changes in the biopolymer according to the DS. Acetylation also contributed to improve antioxidant capacity.
基金funded by the Joint Funds of the Natural Science Foundation of China with the Natural Science Foundation of Yunnan (Grant No. U1502232,U1033601)the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20135314110005)
文摘In order to explain the formation process of slope hazards, and to identify the key factors leading to instability of a slope, Emeishan basalt saprolite in vadose zones of the Touzhai landslide in Zhaotong, Yunnan, was studied. The formation and evolution of Emeishan basalt saprolite was examined using, amongst other techniques, field investigations,thin section analysis, scanning electron microscopy(SEM) observations, chemical analysis, physical and water-physical property tests of rock masses. Field observations revealed that the majority of the weathered rock blocks were presented as a concentric layer structure in which an internal corestone was enveloped with several layers of external saprolized crust. Chemical and mineralogical analysis identified that iron was the most sensitive element and that the weathering progress usually started with the oxidation of Fe2+ to Fe3+ in rock blocks. Alkaline elements such as Si, Ca, Mg, Na and K were also dissolved and Fe and Al were concentrated in saprolized crusts. Results indicated that loss on ignition(LOI) also increased significantly. SEM results showed that the weathering intensity of thebasalt blocks decreased gradually from the outside to the inside, and the mineral morphology significantly differed on both sides of the weathering front. The saprolized crusts presented cellular microstructure features due to the generation of micropore and clay minerals. Thin section analysis showed that plagioclase was relatively more stable than pyroxene and chlorite during weathering. With a centripetal propagation of the weathering front, saprolized crusts became thicker and corestones became smaller; fresh Emeishan basalt blocks gradually turned into saprolized blocks. Due to the loose structure and low strength of saprolite, the quality of the Emeishan basalt mass significantly deteriorated, this being a potentially important factor which caused the Touzhai landslide to occur.
文摘This paper relates to highly dispersed supported Pd/MWCNTs and Fd/a-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts prepared by bio- logical reduction method and chemical method, respectively, were investigated using XRD, TEM and specific surface char- acterization methods. The catalytic properties of catalysts were studied through activity evaluation means. The test results showed that the catalysts prepared by biological method were characteristic of small Pd nanoparticle size, good dispersion and low agglomeration, while possessing a high activity and stability in styrene hydrogenation reaction in comparison with catalysts prelgared via the chemical method.
基金supported by National Key Technology R&D Program during the 11th Five-Year Plan Perio(Grant NO. 2008BAB29B01)State Key Program of National Natural Science of China(Grant NO. 41130745)Research foundation of the State Key Laboratory of Geohazard Prevention & Geoenvironment Protection (Grant NO.SKLGP2010Z008)
文摘Grout plays an important role in the transmission and maintenance of anchoring force,and in the protection of anchorage materials against corrosion.Thus,the hardening characteristics of grout directly affect the anchoring effectivity and long-term reliability.We have excavated a prestressed anchorage which has been in service for 20 years,and have tested the grout which has worked for that long period under complicated geological conditions through strength tests and have analyzed its mineral composition using scanning electron microscopy(SEM) and X-ray diffraction(XRD).The results show that the mineral composition of the 12.5 m segment differs from other segments,and corresponds with poor coagulation characteristics of the 12.5 m segment grout.Analysis shows that unhydrated tricalcium silicate may be the reason for the localized poor coagulation.
文摘Transmission electron microscopy and surface- and bulk-sensitive spectroscopic methods were used to study the morphology and the electronic structure of a hybrid organic-inorganic system composed of gold nanoparticles (NP's) which were distributed in an organic matrix. Au atoms deposited onto a copper phthalocyanine (CuPc) surface diffuse into the organic matrix and self-assemble in well defined NP's with metallic properties. No formation of a continuous metallic Au film on top of the CuPc film is observed up to nominal coverages as large as 130 A.
文摘Highly efficient synthesis methods have been developed and characteristics of nanometallocarbosilanes molecular structure were studied by the research team of GNIIChTEOS (State Research Institute for Chemistry and Technology of Organoelement Compounds). Nanometallocarbosilanes were synthesized by thermal co-condensation of oligocarbosilanes and alkyl amides of refractory metals. Initial, intermediate and final products of side reactions were characterized by 1H, 13C, 29Si NMR (nuclear magnetic resonance), IR (infra-red) spectroscopy, GPC (gel-penetrating chromatography), TGA (thermal gravimetric analysis), TEM (transmission electron microscopy), SEM (scanning electron microscopy), RES (X-ray phase analysis) and elemental analysis. The proposed synthesis method of nanometallocarbosilanes was lbund to produce fusable soluble organosilicon oligomers with homogeneous distribution of nanoscale (10-20 nm) metal particles in the oligomer matrix. A computational model of the group and elemental composition of nanometallocarbosilanes was developed; it was shown that they are molecular globules of near-spherical shape and rigid polycyclic structure. Thermochemical treatment of nanometallocarbosilanes leads to SiC-nanoceramics (a high yield of up to 75-80 mass%) modified by metal nanoparticles (20-30 nm) contributing to its stabilization. The application of preceramic oxygen-free nanometallocarbosilanes will make it possible to advance in solving the problem of ceramic composite materials with long-term resistance at temperatures above 1,500 ℃ in oxidizing environments.
文摘Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were characterized by BET (Brunauer Emmett Teller), XRD (X-ray diffractometer), SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) to understand the surface area, phase, structure, morphology and electrical conductivity of the respective electrode material. The surface area was obtained as 2.312 m2"g"l and 0.892 m2"g"1, respectively for 12% of activated carbon in the expander of negative and 0.70% of TiO2 (Titanium dioxide) in the PAM (positive active material). The structural analysis reveals an increase in the tetrabasic lead sulfate and also evidenced by well grown crystals in the PAM with the TiO2, respectively obtained by XRD and SEM techniques. The impedance spectra analysis shows an increase of electrical conductivity of negative active mass with temperature. The battery results showing two fold enhancements in the charge acceptance were attributed to the high surface area activated carbon in the NAM (negative active material). The materials properties of electrodes and their influence on the battery performance were discussed.