Technology of variable polarity plasma arc for magnesium alloy welding,Microstructure and mechanical properties of laser welded CGHAZ of RPC steel,Interracial reaction between lead-free solder and Cu pad,Numerical ...Technology of variable polarity plasma arc for magnesium alloy welding,Microstructure and mechanical properties of laser welded CGHAZ of RPC steel,Interracial reaction between lead-free solder and Cu pad,Numerical caculation of metals explosive welding parameters and their engining application,Fuzzy control of arc length for current waveform controlled short circuiting arc welding under high-speed welding condition,Lift-off characteristics at interface and impedance of piezoelectric transducer in wedge bonding technology……展开更多
The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al-12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0.166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg- 0.13%Zr (alloy 2) were invest...The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al-12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0.166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg- 0.13%Zr (alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100℃/80h and 100℃/48h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753MPa and 788MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.展开更多
Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg1...Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg12Ce) phase can apparently elevate recrystallization temperature by preventing the grain boundary migration. No dynamic recrystallization occurs during the hot-extrusion. The mechanical properties of as extruded specimens are (σb=278.5 MPa,) δ=12.0%, while those of the specimens annealed at 250 ℃ for 100 h are σb=(272.6 MPa,) δ=(11.3%,) which indicate that the alloy has good mechanical properties at room temperature.展开更多
Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was...Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was prepared successfully by spray forming, the feasibility of cold roiling this alloy was investigated, and the cold roiling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-roiled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties. Particularly, it shows a low elastic modulus (-88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.展开更多
In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering o...In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.展开更多
The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sinte...The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).展开更多
The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), ...The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature.展开更多
The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microsco...The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.展开更多
6061Al matrix composites reinforced by ZnO-coated Al18B4O33 whiskers were fabricated by a semi-solid mechanical stirring technique.The effects of ZnO coating on interfacial reaction between whiskers and matrix and the...6061Al matrix composites reinforced by ZnO-coated Al18B4O33 whiskers were fabricated by a semi-solid mechanical stirring technique.The effects of ZnO coating on interfacial reaction between whiskers and matrix and the tensile properties of the composites were investigated.Tensile tests on composites were performed at room temperature,and microstructures were observed by scanning electron microscopy(SEM).The results show that the surface treatment of whiskers could reduce interfacial reaction effectively,improve the wettability between whiskers and matrix and enhance the tensile properties of the composites obviously.In addition,semi-solid stirring parameters were also under preliminary study.The stirring parameters were determined by the distribution of whiskers in the composites.The composites with homogeneously distributed whiskers were fabricated by semi-solid stirring at 610 ℃ for 30 min.展开更多
Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addi...Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.展开更多
The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone ...The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone composition and fracture mechanism were studied from a meso-structural per- spective, and the relationship between meso-structure and macro-mechanical characteristics at high temperature was revealed. The findings demonstrated that the fluctuation in diffraction intensity of kao- linite in the mudstone caused the fluctuation in its mechanical properties. The overall structure under- went a phase change around 600℃, which led to the sudden change in the mechanical properties of mudstone samples. When the temperature reached 600 ℃, the crystalline state worsened and kaolinite disappeared; however, some illite was produced, indicating that the chemical reaction of the structure and sudden drop of bearing capacity of the mudstone. Mudst0ne fracturing at high temperature involves mainly intergranular and transgranular fractures, which are typical in micro-brittle tensile failure. Con- sidering the macro-fracture characteristics of mudstone, the results suggested that macro-fracture under external force corresoonds to the meso-fracture.展开更多
The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl based alloy (Ti 33Al 3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully lamellar micr...The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl based alloy (Ti 33Al 3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.展开更多
This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surfa...This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surface of fly was conducted to examine the wing characteristics. Microscopic observation of fly's wings were also conducted by using a laser beam microscope. The results of a series of observation and measurement revealed the flight characteristics of flies, such as the wing tip velocity, wing path, wing flexibility, wing structure, resistance to rain drops, and so forth.展开更多
Inorganic polymers are a novel class of materials formed by the polymerization of silicon, aluminium and oxygen species to form an amorphous three-dimensional framework structure. The basis of this process is the alka...Inorganic polymers are a novel class of materials formed by the polymerization of silicon, aluminium and oxygen species to form an amorphous three-dimensional framework structure. The basis of this process is the alkaline solutions to induce a certain amount of Si and AI atoms to dissolve from a feedstock such as aluminosilicate. A study of 27A1 MAS-NMR was carried out in an attempt to understand the reaction mechanism of the inorganic polymerization at ambient temperature. Scanning electron microscopy (SEM) and X-ray diflYactometry (XRD) were also employed to establish the composition and microstructure of the inorganic polymerization. Specimens were prepared with different A1/Si mole ratios from the starting materials. The higher the AI content, the more sufficient the AI atoms that can combine with SiO4, and the longer the reaction time, the more the bonded Si--O--A1--O polymer structure, and then the higher the A1 content, the fewer the octahedral A1 with a uniform Si--O--A1--O structure in four directions, because four AI atoms are combined with SiO4, resulting in a uniform Si--O--AI--O structure in four directions. The results show that they have an amorphous microstructure.展开更多
In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigat...In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.展开更多
The transformation behaviors and microstructures of a low carbon multi-phase steel were investigated by the simulation of deformation-relaxation-accelerated cooling processing,using a Gleeble 3500 thermal-mechanical s...The transformation behaviors and microstructures of a low carbon multi-phase steel were investigated by the simulation of deformation-relaxation-accelerated cooling processing,using a Gleeble 3500 thermal-mechanical simulator.A pre-treatment of solid solution at 1200°C was implemented to minimize the influence on transformation from solid solution/precipitation qualities of 0.08%Nb in this steel.On this basis,the effect of austenite grain size and accelerated cooling start temperature were studied individually.The results indicated that the transformation of ferrite in multi-phase steel could be significantly promoted by the refinement of austenite grains and the increase of relaxation time,while the hard phase,such as lath bainite or martensite,could still be obtained with the following accelerated cooling.In contrast,more uniform lower temperature transformed microstructure could form from coarse grain austenite.The potential benefit of austenite grain size on adjusting the proportion of phases in multiphase steel was also discussed.展开更多
ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption ...ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption and luminescence spectroscopy. The increase of particle size confirms the growth of ZnO shell. The segregation of CuO phase observed in ZnO: Cu core is not detected in ZnO:Cu/ZnO core/shell nanocrystals from Raman spectra. It is suggested that some Cu ions can be segregated from ZnO nanocrystals, and the separated Cu ions can be incorporated inside ZnO shell after the growth of ZnO shell. The visible emission mechanism is discussed in detail, and the photoluminescence analysis indicates that the core/shell structure helps to eliminate the surface-related emission.展开更多
文摘Technology of variable polarity plasma arc for magnesium alloy welding,Microstructure and mechanical properties of laser welded CGHAZ of RPC steel,Interracial reaction between lead-free solder and Cu pad,Numerical caculation of metals explosive welding parameters and their engining application,Fuzzy control of arc length for current waveform controlled short circuiting arc welding under high-speed welding condition,Lift-off characteristics at interface and impedance of piezoelectric transducer in wedge bonding technology……
基金Project (2001AA332030) supported by the National High Technology Research and Development Programof China
文摘The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al-12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0.166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg- 0.13%Zr (alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100℃/80h and 100℃/48h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753MPa and 788MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.
文摘Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg12Ce) phase can apparently elevate recrystallization temperature by preventing the grain boundary migration. No dynamic recrystallization occurs during the hot-extrusion. The mechanical properties of as extruded specimens are (σb=278.5 MPa,) δ=12.0%, while those of the specimens annealed at 250 ℃ for 100 h are σb=(272.6 MPa,) δ=(11.3%,) which indicate that the alloy has good mechanical properties at room temperature.
基金the Hundred-Talent-Person Project of Chinese Academy of Sciences.
文摘Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was prepared successfully by spray forming, the feasibility of cold roiling this alloy was investigated, and the cold roiling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-roiled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties. Particularly, it shows a low elastic modulus (-88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.
文摘In order to improve dry sliding wear resistance of pure aluminum against steel, aluminum-based composites reinforced with different contents of SiC,MoS2 and SiC/MoS2 particles were synthesized by press and sintering of the corresponding powder mixtures. The microstructural evaluations showed a dense microstructure which were in good agreement with the result of density and hardness measurements. The results of pin on disk wear tests performed against an AISI 52100 steel pin at a constant load and sliding velocity showed that there was a critical content for both types of the reinforcements at which the lowest wear rate was obtained, i.e. 10 vol.% and 2 vol.%, respectively,for Al/SiC and Al/MoS2 composites. However,the lowest wear rate and friction of coefficient were attained for Al/10 SiC/2 MoS2 hybrid composite. According to the scanning electron microscope observations, the predominant wear mechanism was changed from adhesion to abrasion mostly whenMoS2 particles were incorporated in the pure aluminum. Mild delamination was identified as the main wear mechanism for Al/SiC and Al/SiC/MoS2 composites. The frictional traces and worn surfaces of Al/SiC/MoS2 composites approached to those of Al/SiC composites,indicating the dominant role of SiC particles in tribological behavior of the hybrid composites.
基金Foundation item: Project(2002AA331090) supported by the Hi-tech Research and Development Program of China Project(06D073) supported by Scientific Research Fund of Education Department of Hunan Province
文摘The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).
基金Project (51412020304QT7106) supported by the National Defense Pre-investigation Foundation of ChinaProject(2003AA741043) supported by the National High-Tech Research and Development Program of ChinaProject(5133001E) supported by the State Key Fundamental Research and Development Program of China
文摘The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature.
基金Project(2005CB623706)supported by the State Key Fundamental Research and Development Programof China
文摘The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.
基金Project(2006CB605203-3) supported by the National Basic Research Program of China
文摘6061Al matrix composites reinforced by ZnO-coated Al18B4O33 whiskers were fabricated by a semi-solid mechanical stirring technique.The effects of ZnO coating on interfacial reaction between whiskers and matrix and the tensile properties of the composites were investigated.Tensile tests on composites were performed at room temperature,and microstructures were observed by scanning electron microscopy(SEM).The results show that the surface treatment of whiskers could reduce interfacial reaction effectively,improve the wettability between whiskers and matrix and enhance the tensile properties of the composites obviously.In addition,semi-solid stirring parameters were also under preliminary study.The stirring parameters were determined by the distribution of whiskers in the composites.The composites with homogeneously distributed whiskers were fabricated by semi-solid stirring at 610 ℃ for 30 min.
基金Supported by "863"High Technology Projects(No. 2002AA332080)
文摘Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.
基金financial support from the National Natural Science Foundation of China(Nos.51074166,51104128,51322401 and 51204159)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120095110013)+1 种基金the Science and Technology Projects of Urban and Rural Housing Ministry of Construction of China(No.2011-k3-5)the‘‘Blue Project’’of Jiangsu Province are greatly appreciated
文摘The meso-structure mineral composition and fracture mechanism of uniaxial compressed mudstone samples at high temperature were analyzed by XRD and scanning electron microscopy. The effect of tem- perature on mudstone composition and fracture mechanism were studied from a meso-structural per- spective, and the relationship between meso-structure and macro-mechanical characteristics at high temperature was revealed. The findings demonstrated that the fluctuation in diffraction intensity of kao- linite in the mudstone caused the fluctuation in its mechanical properties. The overall structure under- went a phase change around 600℃, which led to the sudden change in the mechanical properties of mudstone samples. When the temperature reached 600 ℃, the crystalline state worsened and kaolinite disappeared; however, some illite was produced, indicating that the chemical reaction of the structure and sudden drop of bearing capacity of the mudstone. Mudst0ne fracturing at high temperature involves mainly intergranular and transgranular fractures, which are typical in micro-brittle tensile failure. Con- sidering the macro-fracture characteristics of mudstone, the results suggested that macro-fracture under external force corresoonds to the meso-fracture.
文摘The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl based alloy (Ti 33Al 3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.
文摘This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surface of fly was conducted to examine the wing characteristics. Microscopic observation of fly's wings were also conducted by using a laser beam microscope. The results of a series of observation and measurement revealed the flight characteristics of flies, such as the wing tip velocity, wing path, wing flexibility, wing structure, resistance to rain drops, and so forth.
基金supported by Energy Resource Technology Development Project [The Development and commercialization of Inorganic Polymer Ceramic Panel] of Korea Energy Management Corporationsupported by NCRC(National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘Inorganic polymers are a novel class of materials formed by the polymerization of silicon, aluminium and oxygen species to form an amorphous three-dimensional framework structure. The basis of this process is the alkaline solutions to induce a certain amount of Si and AI atoms to dissolve from a feedstock such as aluminosilicate. A study of 27A1 MAS-NMR was carried out in an attempt to understand the reaction mechanism of the inorganic polymerization at ambient temperature. Scanning electron microscopy (SEM) and X-ray diflYactometry (XRD) were also employed to establish the composition and microstructure of the inorganic polymerization. Specimens were prepared with different A1/Si mole ratios from the starting materials. The higher the AI content, the more sufficient the AI atoms that can combine with SiO4, and the longer the reaction time, the more the bonded Si--O--A1--O polymer structure, and then the higher the A1 content, the fewer the octahedral A1 with a uniform Si--O--A1--O structure in four directions, because four AI atoms are combined with SiO4, resulting in a uniform Si--O--AI--O structure in four directions. The results show that they have an amorphous microstructure.
基金supported by the National Natural Science Foundation of China(51671018,51531001,51422101,51371003,and 51671021)111 Project(B07003)+5 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKL-AMM-USTB(2016Z-04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Programthe Fundamental Research Funds for the Central Universitiesthe financial support by US-NSF under contract DMR-1408722
文摘In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB630801)
文摘The transformation behaviors and microstructures of a low carbon multi-phase steel were investigated by the simulation of deformation-relaxation-accelerated cooling processing,using a Gleeble 3500 thermal-mechanical simulator.A pre-treatment of solid solution at 1200°C was implemented to minimize the influence on transformation from solid solution/precipitation qualities of 0.08%Nb in this steel.On this basis,the effect of austenite grain size and accelerated cooling start temperature were studied individually.The results indicated that the transformation of ferrite in multi-phase steel could be significantly promoted by the refinement of austenite grains and the increase of relaxation time,while the hard phase,such as lath bainite or martensite,could still be obtained with the following accelerated cooling.In contrast,more uniform lower temperature transformed microstructure could form from coarse grain austenite.The potential benefit of austenite grain size on adjusting the proportion of phases in multiphase steel was also discussed.
基金supported by the National Natural Science Foundation of China (Nos.60877029,10904109,60977035 and 60907021)the Natural Science Foundation of Tianjin (No.09JCYBJC01400)the Tianjin Key Subject for Materials Physics and Chemistry
文摘ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption and luminescence spectroscopy. The increase of particle size confirms the growth of ZnO shell. The segregation of CuO phase observed in ZnO: Cu core is not detected in ZnO:Cu/ZnO core/shell nanocrystals from Raman spectra. It is suggested that some Cu ions can be segregated from ZnO nanocrystals, and the separated Cu ions can be incorporated inside ZnO shell after the growth of ZnO shell. The visible emission mechanism is discussed in detail, and the photoluminescence analysis indicates that the core/shell structure helps to eliminate the surface-related emission.