The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch...The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.展开更多
Butt joining of Al–Cu bilayer sheet produced by cold roll bonding was studied through friction stir welding (FSW). A defect free joint was obtained. Flow patterns and mixing of two layers during FSW were investigated...Butt joining of Al–Cu bilayer sheet produced by cold roll bonding was studied through friction stir welding (FSW). A defect free joint was obtained. Flow patterns and mixing of two layers during FSW were investigated. Microstructural investigations and hardness profile measurements were carried out. It is shown that material flow in stir zone leads to the formation of banding structure in Cu layer at advancing side. Traces of Al particles along with Al–Cu intermetallic compounds exist in the fined grain region of this banding structure which leads to higher hardness values.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
PU (polyurethane) integral skin and PVC (polyvinyl chloride) are polymeric materials which have favorable physical characteristics to reduce the impact noise when applied to floor systems. In civil construction, f...PU (polyurethane) integral skin and PVC (polyvinyl chloride) are polymeric materials which have favorable physical characteristics to reduce the impact noise when applied to floor systems. In civil construction, floating floors systems are composed of two layers above the slab: a resilient layer and, above this, a rigid layer of cement matrix that works as a subfloor. This research aims to evaluate the incorporation of PVC and PU skin waste in the resilient layer of the floating floor, for impact noise insulation. It was conducted physical, mechanical and morphological tests in the composite, as SEM (scanning electron microscopy), determination of compressive creep, and impact noise test to evaluate the absorption capacity of the floor system over time. Furthermore, experimental results were compared with theoretical studies. These correlations may assist in understanding the behavior of impact noise damping and its relation to the size of the samples.展开更多
In this study,the thick AlGaN epilayers have been grown on the c-plane sapphire substrate and the free-standing GaN substrate using low-temperature AlN nucleation layers by low-pressure metal-organic chemical vapor de...In this study,the thick AlGaN epilayers have been grown on the c-plane sapphire substrate and the free-standing GaN substrate using low-temperature AlN nucleation layers by low-pressure metal-organic chemical vapor deposition(LPMOCVD).High resolution X-ray diffraction(HRXRD),atom force microscopy(AFM),scanning electron microscopy(SEM),photoluminescence(PL) and Raman scattering measurements have been employed to study the crystal quality,threading dislocation density,surface morphology,optical properties and phonon properties of thick AlGaN epifilms.The results indicate that AlGaN epifilms crystal quality can be improved greatly when grown on the free-standing GaN substrate.We calculated the threading dislocation density and found that thick AlGaN epifilm grown on the free-standing GaN substrate is much lower in total threading dislocation density than that grown on the sapphire substrate,although the surface morphology is rougher than that of sapphire substrate.展开更多
基金Project(ZR2016EEQ03) supported by the Shandong Province Natural Science Foundation,ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.
基金the research board of Sharif University of Technology for the financial support
文摘Butt joining of Al–Cu bilayer sheet produced by cold roll bonding was studied through friction stir welding (FSW). A defect free joint was obtained. Flow patterns and mixing of two layers during FSW were investigated. Microstructural investigations and hardness profile measurements were carried out. It is shown that material flow in stir zone leads to the formation of banding structure in Cu layer at advancing side. Traces of Al particles along with Al–Cu intermetallic compounds exist in the fined grain region of this banding structure which leads to higher hardness values.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
文摘PU (polyurethane) integral skin and PVC (polyvinyl chloride) are polymeric materials which have favorable physical characteristics to reduce the impact noise when applied to floor systems. In civil construction, floating floors systems are composed of two layers above the slab: a resilient layer and, above this, a rigid layer of cement matrix that works as a subfloor. This research aims to evaluate the incorporation of PVC and PU skin waste in the resilient layer of the floating floor, for impact noise insulation. It was conducted physical, mechanical and morphological tests in the composite, as SEM (scanning electron microscopy), determination of compressive creep, and impact noise test to evaluate the absorption capacity of the floor system over time. Furthermore, experimental results were compared with theoretical studies. These correlations may assist in understanding the behavior of impact noise damping and its relation to the size of the samples.
基金supported by the National Key Science and Technology Special Project,China(Grant No.2008ZX01002-002)the Major Program and State Key Program of the National Natural Science Foundation of China(Grant Nos.60890191 and 60736033)the Fundamental Research Funds for the Central Universities,China(Grant No. JY10000904009)
文摘In this study,the thick AlGaN epilayers have been grown on the c-plane sapphire substrate and the free-standing GaN substrate using low-temperature AlN nucleation layers by low-pressure metal-organic chemical vapor deposition(LPMOCVD).High resolution X-ray diffraction(HRXRD),atom force microscopy(AFM),scanning electron microscopy(SEM),photoluminescence(PL) and Raman scattering measurements have been employed to study the crystal quality,threading dislocation density,surface morphology,optical properties and phonon properties of thick AlGaN epifilms.The results indicate that AlGaN epifilms crystal quality can be improved greatly when grown on the free-standing GaN substrate.We calculated the threading dislocation density and found that thick AlGaN epifilm grown on the free-standing GaN substrate is much lower in total threading dislocation density than that grown on the sapphire substrate,although the surface morphology is rougher than that of sapphire substrate.