The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test,tensile test,optical microscopy (OM) and transmission electro...The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test,tensile test,optical microscopy (OM) and transmission electron microscopy (TEM).The results show that 50% cold rolling deformation prior to aging is beneficial since it promotes a more homogeneous distribution of the precipitation phase and reduces the number of precipitation phase on the grain boundaries,and thus shrinks the total volume of precipitation-free zones at grain and sub-grain boundaries.As a result,the tensile properties of 2519A aluminum alloy have been significantly improved.展开更多
The developmental process of Myeloma cells under a digital optical microscope has been inspected and monitored by using time-lapsed recording technique. Myeloma cells were cultured in medium contained 20% and 50% of F...The developmental process of Myeloma cells under a digital optical microscope has been inspected and monitored by using time-lapsed recording technique. Myeloma cells were cultured in medium contained 20% and 50% of Fetal Bovine Serum (FBS), respectively. Inspection and monitoring for 6 hours showed the effect of the FBS to mobility, proliferation rate, and development of cell cycle phases of Myeloma cells. Using time-lapsed data, the speed of cells was 3.5-6.0 pm/s when using FBS 20% and increased to 5.0-8.0 p.m/s when using FBS 50%. The rate of cells decreases from 2 cells/hr when using FBS 20% to 1/6 cells/br when using FBS 50%. The cells division process is signified by the change in gray level and it took every 50-70 minutes.展开更多
In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigat...In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.展开更多
基金Project(2005CB623706) supported by the National Basic Research Program of China
文摘The influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy was investigated by means of microhardness test,tensile test,optical microscopy (OM) and transmission electron microscopy (TEM).The results show that 50% cold rolling deformation prior to aging is beneficial since it promotes a more homogeneous distribution of the precipitation phase and reduces the number of precipitation phase on the grain boundaries,and thus shrinks the total volume of precipitation-free zones at grain and sub-grain boundaries.As a result,the tensile properties of 2519A aluminum alloy have been significantly improved.
文摘The developmental process of Myeloma cells under a digital optical microscope has been inspected and monitored by using time-lapsed recording technique. Myeloma cells were cultured in medium contained 20% and 50% of Fetal Bovine Serum (FBS), respectively. Inspection and monitoring for 6 hours showed the effect of the FBS to mobility, proliferation rate, and development of cell cycle phases of Myeloma cells. Using time-lapsed data, the speed of cells was 3.5-6.0 pm/s when using FBS 20% and increased to 5.0-8.0 p.m/s when using FBS 50%. The rate of cells decreases from 2 cells/hr when using FBS 20% to 1/6 cells/br when using FBS 50%. The cells division process is signified by the change in gray level and it took every 50-70 minutes.
基金supported by the National Natural Science Foundation of China(51671018,51531001,51422101,51371003,and 51671021)111 Project(B07003)+5 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKL-AMM-USTB(2016Z-04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Programthe Fundamental Research Funds for the Central Universitiesthe financial support by US-NSF under contract DMR-1408722
文摘In this study, mechanical tests were conducted oil a face-centered cubic FeCoNiCrMn high-entropy alloy, both in tension and compression, in a wide range of strain rates (10^-4-10^4 s^-1) to systematically investigate its dynamic response and underlying deformation mechanism. Materials with different grain sizes were tested to understand the effect of grain size, thus grain boundary volume, on the mechanical prop-erties. Microstructures of various samples both before and after deformation were examined using elec-tron backscatter diffraction and transmission electron microscopy. The dislocation structure as well as deformation-induced twins were analyzed and correlated with the measured mechanical properties. Plastic stability during tension of the current high-entropy alloy (HEA), in particular, at dynamic strain rates, was discussed in lights of strain-rate sensitivity and work hardening rate. It was found that, under dynamic conditions, the strength and uniform ductility increased simultaneously as a result of the mas-sive formation of deformation twins. Specifically, an ultimate tensile strength of 734 MPa and uniform elongation of-63% are obtained at 2.3×10^3 s^-1, indicating that the alloy has great potential for energy absorption upon impact loading.