The early risk of internal contaminated accumulation of 147Pm is in blood cells and endothelial cells, especially in red blood cells. Then 147Pm is selectively deposited in ultrastructure of liver cells, such as in nu...The early risk of internal contaminated accumulation of 147Pm is in blood cells and endothelial cells, especially in red blood cells. Then 147Pm is selectively deposited in ultrastructure of liver cells, such as in nucleus, nucleolus, rough endoplasmic reticulum, mitochondria and microbodies. Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle, and so does in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule. With the prolongation of observing time, 147Pm is selectively and steadily deposited in subcellular level of organic component for bone. Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts. Particularly, in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum. In addition, numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.展开更多
Three human liver tissue samples (~5 mm × 40 mm × 20 mm) were excised from a cancer patient's liver during surgery. The microradiology analysis was performed with a non-standard approach on a synchrotro...Three human liver tissue samples (~5 mm × 40 mm × 20 mm) were excised from a cancer patient's liver during surgery. The microradiology analysis was performed with a non-standard approach on a synchrotron. High-resolution refractive-index edge-enhanced microradiographs that cover a larger volume of the liver tissue sample were obtained. The cancer tissue and normal tissue could be clearly identified and distinguished based on their different textures. Furthermore, new blood vessel hyperplasia was found near the cancer area. Blood vessels with a diameter smaller than 20 μm could be identified. These findings were fully consistent with the histopathological examination of the same area. Microradiographs of the newly formed blood vessels at different angles were also obtained. This result shows that it is possible to further develop this approach into a technique of microradiographic imaging for clinic diagnosis of liver cancer at the early stage.展开更多
文摘The early risk of internal contaminated accumulation of 147Pm is in blood cells and endothelial cells, especially in red blood cells. Then 147Pm is selectively deposited in ultrastructure of liver cells, such as in nucleus, nucleolus, rough endoplasmic reticulum, mitochondria and microbodies. Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle, and so does in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule. With the prolongation of observing time, 147Pm is selectively and steadily deposited in subcellular level of organic component for bone. Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts. Particularly, in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum. In addition, numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.
基金supported by the Major Project of National Natural Science Foundation of China(Grant No.10490182)the Major Project of Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-SW-No 1)+1 种基金Science Council of Taiwan,the POSTECH research fund(1RB9907801)the Swiss Founds National pour la Recherche Scientifique and the EPFL.
文摘Three human liver tissue samples (~5 mm × 40 mm × 20 mm) were excised from a cancer patient's liver during surgery. The microradiology analysis was performed with a non-standard approach on a synchrotron. High-resolution refractive-index edge-enhanced microradiographs that cover a larger volume of the liver tissue sample were obtained. The cancer tissue and normal tissue could be clearly identified and distinguished based on their different textures. Furthermore, new blood vessel hyperplasia was found near the cancer area. Blood vessels with a diameter smaller than 20 μm could be identified. These findings were fully consistent with the histopathological examination of the same area. Microradiographs of the newly formed blood vessels at different angles were also obtained. This result shows that it is possible to further develop this approach into a technique of microradiographic imaging for clinic diagnosis of liver cancer at the early stage.