The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were ...The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.展开更多
The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission el...The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the add...The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(...The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint.展开更多
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th...To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.展开更多
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (...The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.展开更多
The as-cast and as-extruded Mg-9Li, Mg-9Li-0.3Ce alloys were respectively prepared through a simple alloying process and hot extrusion. The microstructures of these alloys were investigated by optical microscope (OM...The as-cast and as-extruded Mg-9Li, Mg-9Li-0.3Ce alloys were respectively prepared through a simple alloying process and hot extrusion. The microstructures of these alloys were investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results indicate that Ce addition produces a strong grain refining effect in Mg-9Li alloy. The grain size of the as-extruded alloy reduces abruptly from 88.2 μm to 10.5 μm when the addition of Ce is 0.36%. Mg12Ce is verified and exists inside the grains or at the grain boundaries, thus possibly pins up grain boundaries and restrains the grain growth.展开更多
The effects of Sn addition on the microstructure of as-cast and as-extruded Mg-9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-c...The effects of Sn addition on the microstructure of as-cast and as-extruded Mg-9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg-9Li-xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg-9Li-5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg-9Li-5Sn alloy possesses the lowest grain size of 45.9 μm.展开更多
The effects of Ce addition on the microstructure of Mg-6Zn-1Mn alloy during casting, homogenization, hot extrusion, T4, T6 and T4+two-step aging were investigated. The mechanical properties of alloys with and without...The effects of Ce addition on the microstructure of Mg-6Zn-1Mn alloy during casting, homogenization, hot extrusion, T4, T6 and T4+two-step aging were investigated. The mechanical properties of alloys with and without Ce were compared. The results showed that Ce had an obvious effect on the microstructure of ZM61-0.5Ce alloy by restricting the occurrence of dynamic recrystallization and restraining the grain growth during extrusion and heat treatment subsequently. A new binary phase Mg 12 Ce was identified in ZM61-0.5Ce alloy, which distributed at grain boundaries and was broken to small particles distributed at grain boundaries along extrusion direction during extrusion. The mechanical properties of as-extruded ZM61-0.5Ce alloy were improved with the addition of Ce. The improved tensile properties of as-extruded ZM61-0.5Ce alloy were due to the finer grain sizes as compared to ZM61 alloy. However, the UTS and YS decreased severely and the elongation increased when ZM61-0.5Ce was treated by T6 and T4+two-step aging. Brittle Mg 12 Ce phase, which was distributed at the grain boundary areas and cannot dissolve into the Mg matrix after solution treatment, became crack source under tensile stress.展开更多
The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential...The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.展开更多
The influence of Nd addition on the microstructures and mechanical properties of AZ80 magnesium alloys was investigated. The results show that the microstructure of as-cast AZS0 magnesium alloy is modified effectively...The influence of Nd addition on the microstructures and mechanical properties of AZ80 magnesium alloys was investigated. The results show that the microstructure of as-cast AZS0 magnesium alloy is modified effectively with the addition of 1.0% Nd, the grain size is decreased from 448 to 125 ~tm, new rod-shaped A111Nd3 phase and block-shaped A12Nd phase are observed in the as-cast microstructure, and fl-Mgl7All2 phases are refined and become discontinuous. The addition of Nd suppresses the discontinuous precipitations at grain boundaries during aging, and the time of reaching the peak hardness is delayed. With the addition of 1.0% Nd, the combined properties reach an optimum, the yield strength, tensile strength and elongation are 103.7 MPa, 224.0 MPa and 8.4%, respectively. After T6 heat treatment, the yield strength and tensile strength of the AZ80-1.0%Nd alloy are increased to 141.1 and 231.1 MPa, respectively.展开更多
The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading t...The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases.展开更多
Mg-2.2Nd-xSr-0.3Zr alloys (x=0, 0.4 and 0.7, mass fraction, %) were prepared by gravity casting. Solution treatment was conducted on the as-cast alloys to homogenize microstructure, and hot extrusion was subsequentl...Mg-2.2Nd-xSr-0.3Zr alloys (x=0, 0.4 and 0.7, mass fraction, %) were prepared by gravity casting. Solution treatment was conducted on the as-cast alloys to homogenize microstructure, and hot extrusion was subsequently conducted. Microstructure was observed using an optical microscope and a scanning electron microscope. Biocorrosion behaviors of the alloy in simulated body fluid were analyzed by mass loss, hydrogen evolution and Tafel polarization experiments. The results show that the amount of residual eutectic phase of the solution treated alloys increases with increasing Sr addition, and the grains are significantly refined after hot extrusion. The corrosion resistance of the solution treated alloys deteriorates apparently with increasing Sr addition, while the corrosion resistance of the as-extruded alloys is improved with Sr addition. Nevertheless, the biocorrosion behavior of the as-extruded alloys obtained by Tafel polarization shows different trends from those obtained by the other two methods.展开更多
The microstructure evolution and phase transformation of Cu-20Ni-20Mn(mass fraction,%) alloy at 450 °C were investigated by X-ray diffraction and transmission electron microscopy(TEM).The variations of tensil...The microstructure evolution and phase transformation of Cu-20Ni-20Mn(mass fraction,%) alloy at 450 °C were investigated by X-ray diffraction and transmission electron microscopy(TEM).The variations of tensile strength,yield strength and hardness of this alloy during aging process were also analyzed.The results show that no significant variations of hardness and strength in the initial stage of aging,with a long incubation period,are observed at 450 °C.Subsequently,the ordered face-centered tetragonal(FCT) Ni Mn phase nucleates and grows up with prolonging the aging time.The hardness and tensile strength of the alloy increase up to their maximum values with increasing the ordered particle size,i.e.,the strength of the alloy reaches 942 MPa after being aged at 450°C for 40h.The main cause of the age-hardening is considered to be precipitation strengthening due to the ordered FCT-Ni Mn particles.展开更多
The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing fr...The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing from 0.1% to 0.5%, the grain size decreases from 83.9 to 65.8 μm. The addition of Sr ranging from 0.1% to 0.3% refines the Al2Ca phase. It changes the morphology of the Al2Ca phase from bone-shaped to granular or banding, and increases its volume fraction. The decrease of grain size of the α-Mg matrix is due to the increase of the effective undercooling degree of the melt and the constitutional undercooling in a diffusion layer ahead of the advancing solid/liquid interface in the alloy modified by the Sr additions. The modification mechanism of Al2Ca is attributed to the adsorption of Sr additions to the Al2Ca crystal. When the Sr content increases to 0.5%, the alloy is over-modified.展开更多
The effects of Bi addition on the microstructures and mechanical properties of as-cast AZ80 alloy were investigated. The results show that with the addition of Bi, the coarse eutectic phases are refined and become dis...The effects of Bi addition on the microstructures and mechanical properties of as-cast AZ80 alloy were investigated. The results show that with the addition of Bi, the coarse eutectic phases are refined and become discontinuous; some flaky and granular Mg 3 Bi 2 phases with a hexagonal structure of D5 2 are observed along the grain boundaries and between dendrites. The tensile strength and elongation increase first, and then decrease with increasing Bi content. AZ80-0.5%Bi alloy has optimum combination mechanical properties. When the content of Bi is above 1.0% (mass fraction), the amount of flaky Mg 3 Bi 2 phase increases markedly, which splits the matrix and deteriorates the tensile strength and elongation.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2022YFE0121400)the National Natural Science Foundation of China(Nos.52071117,52111530297,51601047)+1 种基金the Heilongjiang Provincial Science Fund for Distinguished Young Scholars,China(No.JQ2021E002)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120016)。
文摘The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.
基金Projects(52274402,52174381)supported by the National Natural Science Foundation of China。
文摘The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
文摘The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint.
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the Open Fund for Hubei Provincial Key Laboratory of Advanced Aerospace Power Technology,China(No.DLJJ2103007)the Hunan Graduate Research Innovation Project,China(No.CX20220097)。
文摘To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.
基金Project(51312JQ08)supported by the Pre-Research Foundation of China General Equipment DepartmentProject(NBPJ2013-4)supported by the Postdoctoral Science Foundation of Ningbo Branch of China Academy of Ordnance Science+1 种基金Project(bsh1402073)supported by the Postdoctoral Science Foundation of Zhejiang Province,ChinaProject(2014A610051)supported by the Ningbo Natural Science Foundation of China
文摘The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.
基金Project(2007CB613706)supported by the National Basic Research Program of ChinaProject(2009AA03Z507)supported by the National High-tech Program of ChinaProjects(2010CSTC-HDLS,CSTC2010AA4048)supported by Chongqing Science and Technology Commission,China
文摘The as-cast and as-extruded Mg-9Li, Mg-9Li-0.3Ce alloys were respectively prepared through a simple alloying process and hot extrusion. The microstructures of these alloys were investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results indicate that Ce addition produces a strong grain refining effect in Mg-9Li alloy. The grain size of the as-extruded alloy reduces abruptly from 88.2 μm to 10.5 μm when the addition of Ce is 0.36%. Mg12Ce is verified and exists inside the grains or at the grain boundaries, thus possibly pins up grain boundaries and restrains the grain growth.
基金Projects(51171212,50725413) supported by the National Natural Science Foundation of ChinaProject(2009AA03Z507) supported by the National High-tech Research Program of China+1 种基金Projects(2010CSTC-BJLKR,CSTC2010AA4048) supported by Chongqing Science and Technology Commission,ChinaProject(CDJXS10132203) supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of Sn addition on the microstructure of as-cast and as-extruded Mg-9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg-9Li-xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg-9Li-5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg-9Li-5Sn alloy possesses the lowest grain size of 45.9 μm.
基金Project(2007CB613700)supported by the National Basic Research Program of ChinaProject(2007BAG06B04)supported by the National Key Technology R&D Program+2 种基金Project(CSTC,2009AB4008)supported by the Chongqing Sci&Tech ProgramProject(50725413)supported by the National Natural Science Foundation of ChinaProject(CDJXS10132202)supported by the Fundamental Research Funds for the Central Universities, China
文摘The effects of Ce addition on the microstructure of Mg-6Zn-1Mn alloy during casting, homogenization, hot extrusion, T4, T6 and T4+two-step aging were investigated. The mechanical properties of alloys with and without Ce were compared. The results showed that Ce had an obvious effect on the microstructure of ZM61-0.5Ce alloy by restricting the occurrence of dynamic recrystallization and restraining the grain growth during extrusion and heat treatment subsequently. A new binary phase Mg 12 Ce was identified in ZM61-0.5Ce alloy, which distributed at grain boundaries and was broken to small particles distributed at grain boundaries along extrusion direction during extrusion. The mechanical properties of as-extruded ZM61-0.5Ce alloy were improved with the addition of Ce. The improved tensile properties of as-extruded ZM61-0.5Ce alloy were due to the finer grain sizes as compared to ZM61 alloy. However, the UTS and YS decreased severely and the elongation increased when ZM61-0.5Ce was treated by T6 and T4+two-step aging. Brittle Mg 12 Ce phase, which was distributed at the grain boundary areas and cannot dissolve into the Mg matrix after solution treatment, became crack source under tensile stress.
基金Project (14) supported by Postdoctoral Science Foundation of Central South University, ChinaProject (2008AA03A233) supported by the High-tech Research and Development Program of China
文摘The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.
基金Project (2011BAE22E01-1) supported by the National Key Technology R&D Program of China
文摘The influence of Nd addition on the microstructures and mechanical properties of AZ80 magnesium alloys was investigated. The results show that the microstructure of as-cast AZS0 magnesium alloy is modified effectively with the addition of 1.0% Nd, the grain size is decreased from 448 to 125 ~tm, new rod-shaped A111Nd3 phase and block-shaped A12Nd phase are observed in the as-cast microstructure, and fl-Mgl7All2 phases are refined and become discontinuous. The addition of Nd suppresses the discontinuous precipitations at grain boundaries during aging, and the time of reaching the peak hardness is delayed. With the addition of 1.0% Nd, the combined properties reach an optimum, the yield strength, tensile strength and elongation are 103.7 MPa, 224.0 MPa and 8.4%, respectively. After T6 heat treatment, the yield strength and tensile strength of the AZ80-1.0%Nd alloy are increased to 141.1 and 231.1 MPa, respectively.
基金Project(51004039)supported by the National Natural Science Foundation of ChinaProject(2012713)supported by the Cooperation Promoting Foundation in Science and Technology of Shaoxing City,China
文摘The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases.
基金Project(51301089)supported by the National Natural Science Foundation of ChinaProject(BK20130745)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(13KJB430014)supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,ChinaProject supported by the Qing Lan Project of Jiangsu Province,China
文摘Mg-2.2Nd-xSr-0.3Zr alloys (x=0, 0.4 and 0.7, mass fraction, %) were prepared by gravity casting. Solution treatment was conducted on the as-cast alloys to homogenize microstructure, and hot extrusion was subsequently conducted. Microstructure was observed using an optical microscope and a scanning electron microscope. Biocorrosion behaviors of the alloy in simulated body fluid were analyzed by mass loss, hydrogen evolution and Tafel polarization experiments. The results show that the amount of residual eutectic phase of the solution treated alloys increases with increasing Sr addition, and the grains are significantly refined after hot extrusion. The corrosion resistance of the solution treated alloys deteriorates apparently with increasing Sr addition, while the corrosion resistance of the as-extruded alloys is improved with Sr addition. Nevertheless, the biocorrosion behavior of the as-extruded alloys obtained by Tafel polarization shows different trends from those obtained by the other two methods.
基金Project(51401026)supported by the National Natural Science Foundation of China
文摘The microstructure evolution and phase transformation of Cu-20Ni-20Mn(mass fraction,%) alloy at 450 °C were investigated by X-ray diffraction and transmission electron microscopy(TEM).The variations of tensile strength,yield strength and hardness of this alloy during aging process were also analyzed.The results show that no significant variations of hardness and strength in the initial stage of aging,with a long incubation period,are observed at 450 °C.Subsequently,the ordered face-centered tetragonal(FCT) Ni Mn phase nucleates and grows up with prolonging the aging time.The hardness and tensile strength of the alloy increase up to their maximum values with increasing the ordered particle size,i.e.,the strength of the alloy reaches 942 MPa after being aged at 450°C for 40h.The main cause of the age-hardening is considered to be precipitation strengthening due to the ordered FCT-Ni Mn particles.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(9451806001002350)supported by Guangdong Science Fund+2 种基金Project(30815007)supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyProject(09JJ1007)supported by Hunan Science Fund for Distinguished Young ScholarsProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of China
文摘The microstructure evolution of Mg-Al-Ca alloys modified by the addition of strontium was investigated. It was found that Sr addition leads to the coarsening of α-Mg matrix. However, with the Sr content increasing from 0.1% to 0.5%, the grain size decreases from 83.9 to 65.8 μm. The addition of Sr ranging from 0.1% to 0.3% refines the Al2Ca phase. It changes the morphology of the Al2Ca phase from bone-shaped to granular or banding, and increases its volume fraction. The decrease of grain size of the α-Mg matrix is due to the increase of the effective undercooling degree of the melt and the constitutional undercooling in a diffusion layer ahead of the advancing solid/liquid interface in the alloy modified by the Sr additions. The modification mechanism of Al2Ca is attributed to the adsorption of Sr additions to the Al2Ca crystal. When the Sr content increases to 0.5%, the alloy is over-modified.
基金Project(2007CB613700)supported by the National Basic Research Program of China
文摘The effects of Bi addition on the microstructures and mechanical properties of as-cast AZ80 alloy were investigated. The results show that with the addition of Bi, the coarse eutectic phases are refined and become discontinuous; some flaky and granular Mg 3 Bi 2 phases with a hexagonal structure of D5 2 are observed along the grain boundaries and between dendrites. The tensile strength and elongation increase first, and then decrease with increasing Bi content. AZ80-0.5%Bi alloy has optimum combination mechanical properties. When the content of Bi is above 1.0% (mass fraction), the amount of flaky Mg 3 Bi 2 phase increases markedly, which splits the matrix and deteriorates the tensile strength and elongation.