This work investigated the effects of different Y additions(0,1.5,3.0 and 4.5 wt.%)on the microstructural evolution and mechanical performance of cast Mg−3Nd−0.2Zn−0.5Zr alloy.The results show that as the Y content in...This work investigated the effects of different Y additions(0,1.5,3.0 and 4.5 wt.%)on the microstructural evolution and mechanical performance of cast Mg−3Nd−0.2Zn−0.5Zr alloy.The results show that as the Y content increases,the key secondary phases in as-cast alloys change from the Mg_(12)Nd type to the Mg_(24)Y_(5) type.Meanwhile,the number density of Zn−Zr particles in the grains of as-quenched alloys gradually decreases.HAADF-STEM observations of peak-aged samples reveal that element Y is greatly enriched in the globularβ¢precipitates,leading to a significantly increased volume fraction and promoted precipitation kinetics ofβ¢precipitates,resulting in enhanced strength of the alloy.Tensile tests reveal that,with the addition of 4.5 wt.%Y,the yield strength of the base alloy is substantially increased by 88 and 61 MPa after being aged at 200 and 225°C under peak-aged conditions,respectively.展开更多
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that...The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U2037601,51775334 and 51821001)the National Key Research&Development Program of China(No.2016YFB0701205)+2 种基金the Joint Innovation Fund of CALT and College,China(No.CALT2020-TS07)the Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment,China(No.SKL2020005)the Research Program of Joint Research Center of Advanced Spaceflight Technologies,China(No.USCAST2020-14).
文摘This work investigated the effects of different Y additions(0,1.5,3.0 and 4.5 wt.%)on the microstructural evolution and mechanical performance of cast Mg−3Nd−0.2Zn−0.5Zr alloy.The results show that as the Y content increases,the key secondary phases in as-cast alloys change from the Mg_(12)Nd type to the Mg_(24)Y_(5) type.Meanwhile,the number density of Zn−Zr particles in the grains of as-quenched alloys gradually decreases.HAADF-STEM observations of peak-aged samples reveal that element Y is greatly enriched in the globularβ¢precipitates,leading to a significantly increased volume fraction and promoted precipitation kinetics ofβ¢precipitates,resulting in enhanced strength of the alloy.Tensile tests reveal that,with the addition of 4.5 wt.%Y,the yield strength of the base alloy is substantially increased by 88 and 61 MPa after being aged at 200 and 225°C under peak-aged conditions,respectively.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology Supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Supporting Project of Changchun City,China+1 种基金Project supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization(2008)the"985 Project"of Jilin University,China
文摘The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.