A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical pr...A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical properties and microstructures were determined under basic thermodynamics conditions of aging forming. The results show that pre-deformation shortens the time of primary creep and raises the second steady-state creep rate. Then, the total creep strain is greater, but in the range of test parameters it is still smaller than that without pre-deformation. In addition, transmission electron microscopy(TEM) observation shows that pre-deformation promotes the formation of T1 phase and θ′ phase and makes them distribute more dispersively, while inhibits the generation of δ′ phase, which leads to the improvement of mechanical properties of the alloy. A unified constitutive model reflecting the effects of aging mechanism, stress levels and different pre-deformations was established. The fitting results agree with the experimental data well.展开更多
The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformati...The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.展开更多
Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolut...Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1.展开更多
The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that se...The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that serious Cu segregation was found in the wheel specimen;the microstructure of the Al-Cu wheel was comprised of the casting microstructure and a small amount of the deformed microstructure;the best heat treatment and water quenching system were found to solution treated at(530±5)℃ for 4 h followed by(535±5)℃ for 24 h and aging treated at(155±5)℃ for 4 h;the fracture morphologies of the samples heated under T 6 and T 5-1 heat treatment showed flat,tough nest,and poor plastic characteristics;the fracture morphologies of the samples heated under T 4 heat treatment exhibited complete resilience,but no residual metallographic characteristic;the sample treated under T 4 protocol had the best elongation;the fracture failure was mainly due to the formation of the CuAl_(2)(θ)phases;and the fracture mechanism of the Al-Cu wheel was intergranular fracture.展开更多
In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-direc...In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.展开更多
The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate ...The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.展开更多
In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based m...In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases.展开更多
A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and af...A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and after PEHA loading were characterized by X-ray powder diffraction,N2adsorption/desorption,thermal gravimetric analysis and scanning electron microscope to investigate the textural and thermo-physical properties.CO2adsorption performance was evaluated in a fixed bed adsorption system.Results indicated that the structure of MCM-41 was preserved after loading PEHA.Surface area and total pore volume of PEHA loaded MCM-41 decreased with the increase of loading.The working adsorption capacity of CO2could be significantly improved at 60%of PEHA loading and 75°C.The effect of the height of adsorbent bed was investigated and the best working adsorption capacity for MCM-41-PEHA-60 reached 165 mg·(g adsorbent)-1at 75°C.Adsorption/desorption circle showed that the CO2working adsorption capacity of MCM-41-PEHA kept stable.展开更多
The influence of the boriding conditions on the boride layers was examined by boriding Ti−6Al−2Zr−1Mo−1V alloy in the temperature range of 920−1120℃.The experimental results show that the boride layers were composed ...The influence of the boriding conditions on the boride layers was examined by boriding Ti−6Al−2Zr−1Mo−1V alloy in the temperature range of 920−1120℃.The experimental results show that the boride layers were composed of a continuous thin outer layer of TiB_(2) and a thick inner layer of TiB with whiskers or needle-like morphologies that extended into the substrate.Thick and compact boride layers were obtained when the boriding temperatures were 1000−1080℃,and the treatment time exceeded 8 h.The boride layer depth increased with the boriding temperature and time,and the growth kinetics of the boride layers was characterized by a parabolic curve.The growth kinetics of the boride layers,including both TiB_(2) and TiB layers,were predicted by establishing a diffusion model,which presented satisfactory consistency with the experimental data.As a result,the activation energies of boron in the TiB_(2) and TiB layers were estimated to be 223.1 and 246.9 kJ/mol,respectively.展开更多
AIM: To evaluate the effect of double-balloon enteros- copy (DBE) on pancreas histology and levels of pancre- atic enzymes. METHODS: Conventional upper gastrointestinal endos- copy was performed on five control pi...AIM: To evaluate the effect of double-balloon enteros- copy (DBE) on pancreas histology and levels of pancre- atic enzymes. METHODS: Conventional upper gastrointestinal endos- copy was performed on five control pigs. Oral DBE was performed with an EN-450T5 enteroscope on 20 pigs. Two experimental groups (10 pigs each) were defined according to DBE duration: 90 rain for Group 1 and 140 min for Group 2. During oral insertion, the balloons were not inflated in the descending part of the duodenum to avoid the minor duodenal papilla. Serum amy- lase, lipase and C-reactive protein (CRP) levels were monitored before the procedure and repeated every 30 min until the exploration was finished, as well as 24 h and 7 d after. After the procedure and for a total of 7 d, the pigs were observed twice a day for signs of de- creased activity, irritability, vomiting or anorexia. Gross and microscopic examination of the pancreas was per- formed on day 7. RESULTS: All animals tolerated DBE without clini- cal manifestations of acute pancreatitis. Experimental groups had higher levels of enzymes than the control group at 24 h. Throughout the exploration, the amylase levels increased significantly above the baseline 24 h after DBE, although the increase was not statistically significant and did not reach 20% of the baseline. An increase in lipase and CRP was observed at 24 h after the procedure, although by day 7, all enzymatic lev- els had returned to baseline. No differences between Groups 1 and 2 were found for any enzyme and sam- pling site during and after the procedure. Similarly, no correlation between insertion depth and enzyme levels was observed. Direct in situ and post-removal inspec- tion of the pancreas did not show any evidence of fluid collection, abscesses or hemorrhage. Histological examination of the pancreas from Groups 1 and 2 re- vealed the existence of focal areas (0.14-0.26 mm2) of ischemic necrosis in 47.4% of the animals. In the pigs with damaged pancreas, the left lobe (tail) was always affected. However, this only happened in 83.3% of the samples from the right lobe (head) and in 33.3% of the samples from the body of the pancreas. Significant differences were found between the left lobe (tail) and the body for the percentage of affected pancreas. Both the size of the lesions and the percentage of affected pancreas were higher in the left pancreatic lobe (tail). The presence of the lesions was not related to the ex- ploration length.CONCLUSION: The increase in pancreatic enzymes after DBE could be related to focal points of pancreatic ischemic necrosis due to mechanical stress.展开更多
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f...Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.展开更多
Hot deformation behaviors and microstructure evolution of Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)alloy in theβsingle field are investigated by isothermal compression tests on a Gleeble-3500 simulator at temperatures of 820-...Hot deformation behaviors and microstructure evolution of Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)alloy in theβsingle field are investigated by isothermal compression tests on a Gleeble-3500 simulator at temperatures of 820-900°C and strain rates of 0.001-1 s^(-1).The research results show that discontinuous yield phenomenon and rheological softening are affected by the strain rates and deformation temperatures.The critical conditions for dynamic recrystallization and kinetic model of Ti-35421 alloy are determined,and the Arrhenius constitutive model is constructed.The rheological behaviors of Ti-35421 alloys aboveβphase transformation temperature are predicted by the constitutive model accurately.The EBSD analysis proves that the deformation softening is controlled by dynamic recovery and dynamic recrystallization.In addition,continuous dynamic recrystallization is determined during hot deformation,and the calculation model for recrystallization grain sizes is established.Good linear dependency between the experimental and simulated values of recrystallized grain sizes indicates that the present model can be used for the prediction of recrystallized grain size with high accuracy.展开更多
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(51235010)supported by the National Natural Science Foundation of China
文摘A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical properties and microstructures were determined under basic thermodynamics conditions of aging forming. The results show that pre-deformation shortens the time of primary creep and raises the second steady-state creep rate. Then, the total creep strain is greater, but in the range of test parameters it is still smaller than that without pre-deformation. In addition, transmission electron microscopy(TEM) observation shows that pre-deformation promotes the formation of T1 phase and θ′ phase and makes them distribute more dispersively, while inhibits the generation of δ′ phase, which leads to the improvement of mechanical properties of the alloy. A unified constitutive model reflecting the effects of aging mechanism, stress levels and different pre-deformations was established. The fitting results agree with the experimental data well.
基金Projects(2007CB613704,2007CB613705)supported by the National Basic Research Program of China
文摘The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.
基金Project(31115014)supported by the of Open Research Fund Program of State Key Laboratory of Advanced Design and Manufacture forVehicle Body(Hunan University)Project(12JJ9017)supported by the Natural Science Foundation of Hunan Province,China
文摘Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1.
基金Project(2019 YFC 1511400)supported by the National Key Technologies R&D Program of China。
文摘The Al-Cu wheel adopting the new Al alloy was prepared by the liquid-die forging,and the mechanical properties,composition distribution,microstructure and fracture behavior were investigated.The results showed that serious Cu segregation was found in the wheel specimen;the microstructure of the Al-Cu wheel was comprised of the casting microstructure and a small amount of the deformed microstructure;the best heat treatment and water quenching system were found to solution treated at(530±5)℃ for 4 h followed by(535±5)℃ for 24 h and aging treated at(155±5)℃ for 4 h;the fracture morphologies of the samples heated under T 6 and T 5-1 heat treatment showed flat,tough nest,and poor plastic characteristics;the fracture morphologies of the samples heated under T 4 heat treatment exhibited complete resilience,but no residual metallographic characteristic;the sample treated under T 4 protocol had the best elongation;the fracture failure was mainly due to the formation of the CuAl_(2)(θ)phases;and the fracture mechanism of the Al-Cu wheel was intergranular fracture.
基金the research board of Sharif University of Technology, Iran, for the financial support and provision of the research facilities used for this work
文摘In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.
基金Projected(51775068)supported by the National Natural Science Foundation of China.
文摘The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.
基金Project(51431008)supported by the National Natural Science Foundation of ChinaProjects(2017YFB0703001,2017YFB0305100)supported by the National Key Research and Development Program of China
文摘In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases.
基金Supported by the National Natural Science Foundation of China(20836008,21176132)the Special Research Fund for the Doctoral Program of the Ministry of Education of China(20101012174)
文摘A novel solid support adsorbent for CO2capture was developed by loading pentaethylenehexamine(PEHA)on commercially available mesoporous molecular sieve MCM-41 using wet impregnation method.MCM-41 samples before and after PEHA loading were characterized by X-ray powder diffraction,N2adsorption/desorption,thermal gravimetric analysis and scanning electron microscope to investigate the textural and thermo-physical properties.CO2adsorption performance was evaluated in a fixed bed adsorption system.Results indicated that the structure of MCM-41 was preserved after loading PEHA.Surface area and total pore volume of PEHA loaded MCM-41 decreased with the increase of loading.The working adsorption capacity of CO2could be significantly improved at 60%of PEHA loading and 75°C.The effect of the height of adsorbent bed was investigated and the best working adsorption capacity for MCM-41-PEHA-60 reached 165 mg·(g adsorbent)-1at 75°C.Adsorption/desorption circle showed that the CO2working adsorption capacity of MCM-41-PEHA kept stable.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51761029,51864035)the Natural Science Foundation of Jiangxi Province,China(Nos.2020BABL204011 and 2020BABL204007)Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province(Nanchang Hangkong University),China(Nos.EJ201701513 and EJ201901454).
文摘The influence of the boriding conditions on the boride layers was examined by boriding Ti−6Al−2Zr−1Mo−1V alloy in the temperature range of 920−1120℃.The experimental results show that the boride layers were composed of a continuous thin outer layer of TiB_(2) and a thick inner layer of TiB with whiskers or needle-like morphologies that extended into the substrate.Thick and compact boride layers were obtained when the boriding temperatures were 1000−1080℃,and the treatment time exceeded 8 h.The boride layer depth increased with the boriding temperature and time,and the growth kinetics of the boride layers was characterized by a parabolic curve.The growth kinetics of the boride layers,including both TiB_(2) and TiB layers,were predicted by establishing a diffusion model,which presented satisfactory consistency with the experimental data.As a result,the activation energies of boron in the TiB_(2) and TiB layers were estimated to be 223.1 and 246.9 kJ/mol,respectively.
基金Supported by PI070712 Project (Instituto de Salud Carlos Ⅲ, Ministerio de Sandiady Consumo, Spain)BIO-MED07/08-0019 Project (Consejería de Educación, Cienciae Investigación de la Región de Murcia, Spain)
文摘AIM: To evaluate the effect of double-balloon enteros- copy (DBE) on pancreas histology and levels of pancre- atic enzymes. METHODS: Conventional upper gastrointestinal endos- copy was performed on five control pigs. Oral DBE was performed with an EN-450T5 enteroscope on 20 pigs. Two experimental groups (10 pigs each) were defined according to DBE duration: 90 rain for Group 1 and 140 min for Group 2. During oral insertion, the balloons were not inflated in the descending part of the duodenum to avoid the minor duodenal papilla. Serum amy- lase, lipase and C-reactive protein (CRP) levels were monitored before the procedure and repeated every 30 min until the exploration was finished, as well as 24 h and 7 d after. After the procedure and for a total of 7 d, the pigs were observed twice a day for signs of de- creased activity, irritability, vomiting or anorexia. Gross and microscopic examination of the pancreas was per- formed on day 7. RESULTS: All animals tolerated DBE without clini- cal manifestations of acute pancreatitis. Experimental groups had higher levels of enzymes than the control group at 24 h. Throughout the exploration, the amylase levels increased significantly above the baseline 24 h after DBE, although the increase was not statistically significant and did not reach 20% of the baseline. An increase in lipase and CRP was observed at 24 h after the procedure, although by day 7, all enzymatic lev- els had returned to baseline. No differences between Groups 1 and 2 were found for any enzyme and sam- pling site during and after the procedure. Similarly, no correlation between insertion depth and enzyme levels was observed. Direct in situ and post-removal inspec- tion of the pancreas did not show any evidence of fluid collection, abscesses or hemorrhage. Histological examination of the pancreas from Groups 1 and 2 re- vealed the existence of focal areas (0.14-0.26 mm2) of ischemic necrosis in 47.4% of the animals. In the pigs with damaged pancreas, the left lobe (tail) was always affected. However, this only happened in 83.3% of the samples from the right lobe (head) and in 33.3% of the samples from the body of the pancreas. Significant differences were found between the left lobe (tail) and the body for the percentage of affected pancreas. Both the size of the lesions and the percentage of affected pancreas were higher in the left pancreatic lobe (tail). The presence of the lesions was not related to the ex- ploration length.CONCLUSION: The increase in pancreatic enzymes after DBE could be related to focal points of pancreatic ischemic necrosis due to mechanical stress.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China。
文摘Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.
基金the financial supports from the National Natural Science Foundation of China (Nos. 52001163, 52075237)the Primary Research and Development Plan of Jiangsu Province, China (No. BE2019119)
文摘Hot deformation behaviors and microstructure evolution of Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)alloy in theβsingle field are investigated by isothermal compression tests on a Gleeble-3500 simulator at temperatures of 820-900°C and strain rates of 0.001-1 s^(-1).The research results show that discontinuous yield phenomenon and rheological softening are affected by the strain rates and deformation temperatures.The critical conditions for dynamic recrystallization and kinetic model of Ti-35421 alloy are determined,and the Arrhenius constitutive model is constructed.The rheological behaviors of Ti-35421 alloys aboveβphase transformation temperature are predicted by the constitutive model accurately.The EBSD analysis proves that the deformation softening is controlled by dynamic recovery and dynamic recrystallization.In addition,continuous dynamic recrystallization is determined during hot deformation,and the calculation model for recrystallization grain sizes is established.Good linear dependency between the experimental and simulated values of recrystallized grain sizes indicates that the present model can be used for the prediction of recrystallized grain size with high accuracy.