Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using...Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using OM and SEM. Electrochemical properties of the Mg-2%Ga alloys with different freezing rates were measured by galvanostatic, potentiodynamic and electrochemical impedance spectroscopy tests. The results show that solidification by copper mould leads to intergranular MgsGa2 compounds with small size and large number density. Less adsorbent of Mg^+ and oxide corrosion products occur on the surface of the Mg-2%Ga alloys solidified by copper mould, producing lower corrosion current density of 1.8×10^-5 mA/cm^2. In the galvanostatic tests with 100 mA/cm^2 current density, more negative stable potential of-1.604 V exists in the Mg-2%Ga alloys solidified by iron mould due to the lower freezing rate, which leads to smaller inductive and capacity time constants as well as shorter activity time and better electrochemical activity.展开更多
A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructure...A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructures of the coating before and after immersion in the simulated body fluid were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) The results indicated that the dicalcium phosphate dehydrate coatings exhibited two morphologies during the pre-calcification process. The titration speed of the pre-calcification process had great influence on the morphologies of the pre-calcification coatings. As the soaking time increased, the diffraction peaks of dicalcium phosphate dehydrate disappeared and hydroxyapatite precipitated on the coated substrate surfaces. This indicates the dissolution of dicalcium phosphate dehydrate during the immersion process. The structures of the dicalcium phosphate dehydrate coatings and the formation mechanisms of the hydroxyapatite coatings were investigated in detail.展开更多
(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of di...(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.展开更多
The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMS...The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy.展开更多
The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate ...The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.展开更多
The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocatio...The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.展开更多
With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precip...With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precipitation mechanism was investigated by using the atomic occupation probability picture and average order parameter curve. The simulation results demonstrate that there exists the incubation time for different precipitation mechanisms~ such as non-classical nucleation, the mixed style of non-classical nucleation and spinodal decomposition, and spinodal ordering; and the incubation time shortens in turn for the three kinds of mechanisms. With the increase of Al content of Ni75AlxV25-x alloy, the incubation time of Llz phases shortens continuously and that of DOzz phases is prolonged. The effects of temperature on the incubation time of Llz and DOzz phases are accordant, i.e. the incuba- tion time is greatly prolonged with the temperature rising.展开更多
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th...A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.展开更多
A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process ...A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process combines direct extrusion with a two-step shear−expanding process.The influences of expanding ratios,extrusion temperatures on the deformation of finite element meshes,strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software.Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process.The deformation of finite element meshes of tube blanks is inhomogeneous in the shear−expanding zone,and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy.A extrusion temperature of 380°C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results.The average grain size of tubes fabricated by the TCESE process is approximately 10μm.The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization.The(0001)basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process.The average hardness of the extruded tubes is approximately HV 75,which is obviously improved.展开更多
基金Project (JPPT-115-4-1682) supported by the National Defense Science and Technology Industry Committee of China
文摘Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using OM and SEM. Electrochemical properties of the Mg-2%Ga alloys with different freezing rates were measured by galvanostatic, potentiodynamic and electrochemical impedance spectroscopy tests. The results show that solidification by copper mould leads to intergranular MgsGa2 compounds with small size and large number density. Less adsorbent of Mg^+ and oxide corrosion products occur on the surface of the Mg-2%Ga alloys solidified by copper mould, producing lower corrosion current density of 1.8×10^-5 mA/cm^2. In the galvanostatic tests with 100 mA/cm^2 current density, more negative stable potential of-1.604 V exists in the Mg-2%Ga alloys solidified by iron mould due to the lower freezing rate, which leads to smaller inductive and capacity time constants as well as shorter activity time and better electrochemical activity.
基金Project(51272055) supported by the National Natural Science Foundation of China
文摘A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructures of the coating before and after immersion in the simulated body fluid were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) The results indicated that the dicalcium phosphate dehydrate coatings exhibited two morphologies during the pre-calcification process. The titration speed of the pre-calcification process had great influence on the morphologies of the pre-calcification coatings. As the soaking time increased, the diffraction peaks of dicalcium phosphate dehydrate disappeared and hydroxyapatite precipitated on the coated substrate surfaces. This indicates the dissolution of dicalcium phosphate dehydrate during the immersion process. The structures of the dicalcium phosphate dehydrate coatings and the formation mechanisms of the hydroxyapatite coatings were investigated in detail.
基金Projects (51021063,51301208) supported by the National Natural Science Foundation of ChinaProject (GZ755) supported by Sino-German Center for Promotion of Science+1 种基金Project (2011CB610401) supported by the National Basic Research Program of ChinaProject supported by Shenghua Scholar Program of Central South University,China
文摘(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.
基金Projects(51774125,51674112)supported by the National Natural Science Foundation of ChinaProject(2018YFB1107905)supported by the National Key Research and Development Program of China。
文摘The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy.
基金Projected(51775068)supported by the National Natural Science Foundation of China.
文摘The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy.
基金Project(51405110)supported by the National Natural Science Foundation of ChinaProject(20132302120002)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(LBH-Z14096)supported by Heilongjiang Province Postdoctoral Fund,China
文摘The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.
文摘With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precipitation mechanism was investigated by using the atomic occupation probability picture and average order parameter curve. The simulation results demonstrate that there exists the incubation time for different precipitation mechanisms~ such as non-classical nucleation, the mixed style of non-classical nucleation and spinodal decomposition, and spinodal ordering; and the incubation time shortens in turn for the three kinds of mechanisms. With the increase of Al content of Ni75AlxV25-x alloy, the incubation time of Llz phases shortens continuously and that of DOzz phases is prolonged. The effects of temperature on the incubation time of Llz and DOzz phases are accordant, i.e. the incuba- tion time is greatly prolonged with the temperature rising.
基金the financial support from Iran National Science Foundation (INSF) under grant number 95822903
文摘A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.
基金financially supported by the National Natural Science Foundation of China (Nos.52071042,51771038)the Chongqing Talent Plan,China (No.CQYC202003047)Chongqing Natural Science Foundation,China (Nos.cstc2018jcyj AX0249,cstc2018jcyj AX0653)。
文摘A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process combines direct extrusion with a two-step shear−expanding process.The influences of expanding ratios,extrusion temperatures on the deformation of finite element meshes,strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software.Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process.The deformation of finite element meshes of tube blanks is inhomogeneous in the shear−expanding zone,and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy.A extrusion temperature of 380°C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results.The average grain size of tubes fabricated by the TCESE process is approximately 10μm.The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization.The(0001)basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process.The average hardness of the extruded tubes is approximately HV 75,which is obviously improved.