期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Al-4.5%Cu合金凝固过程显微组织的数值模拟 被引量:8
1
作者 刘永刚 陈军 +2 位作者 潘冶 孙国雄 仇春荔 《中国有色金属学报》 EI CAS CSCD 北大核心 2002年第6期1130-1135,共6页
对Al 4 .5 %Cu二元合金在水冷铜型中的凝固进行了模拟 ,建立了耦合温度场、浓度场和微观生长过程的凝固组织模拟模型。以CA(CellularAutomaton)技术为基础 ,建立了晶粒生长过程的局部演变规则 ,在晶粒尺度上模拟了其凝固过程。将相同条... 对Al 4 .5 %Cu二元合金在水冷铜型中的凝固进行了模拟 ,建立了耦合温度场、浓度场和微观生长过程的凝固组织模拟模型。以CA(CellularAutomaton)技术为基础 ,建立了晶粒生长过程的局部演变规则 ,在晶粒尺度上模拟了其凝固过程。将相同条件下的实验结果和模拟结果进行了对照 ,检验了模型的正确性与适用条件。 展开更多
关键词 显微组织模拟 CellularAutomaton技术 观耦合模拟
下载PDF
球墨铸铁凝固显微组织的元胞自动机模拟 被引量:9
2
作者 张蕾 赵红蕾 朱鸣芳 《金属学报》 SCIE EI CAS CSCD 北大核心 2015年第2期148-158,共11页
改进了前期工作建立的多相元胞自动机(multi-phase cellular automaton,MCA)模型,模拟以离异共晶方式凝固的球墨铸铁的显微组织演化.在模型中采用局部溶质平衡法计算石墨和奥氏体的生长动力学,并在石墨的生长模型中考虑石墨与Fe的密度比... 改进了前期工作建立的多相元胞自动机(multi-phase cellular automaton,MCA)模型,模拟以离异共晶方式凝固的球墨铸铁的显微组织演化.在模型中采用局部溶质平衡法计算石墨和奥氏体的生长动力学,并在石墨的生长模型中考虑石墨与Fe的密度比.该模型可以模拟出与实验观测相符合的显微组织形貌.应用该模型模拟分析了石墨与奥氏体的相互作用和竞争生长机制,讨论了冷却速率对凝固结束时石墨球大小和尺寸分布的影响,将模拟结果与实验结果进行了比较.结果表明:奥氏体的析出促进邻近石墨在液相中的生长;奥氏体和石墨两相的生长受C扩散控制;当石墨被奥氏体包围后,生长速度减慢.此外,随着冷却速率的增大,凝固时间缩短,石墨球平均半径减小,不同冷速条件下石墨球尺寸分布的变化规律与实验结果吻合较好. 展开更多
关键词 球墨铸铁 凝固 离异共晶 元胞自动机 显微组织模拟
原文传递
医用Mg-Zn-Ca-Mn合金在PBS模拟体液中的腐蚀行为 被引量:6
3
作者 丁雨田 郭兵 +2 位作者 胡勇 纪国庆 柴利强 《材料导报》 EI CAS CSCD 北大核心 2012年第6期1-6,共6页
利用真空感应熔炼,采用金属模浇铸制备了Mg(100-x-y-z)-Znx-Cay-Mnz四元合金。使用光学显微镜、X射线衍射仪、扫描电镜及能谱仪对合金进行分析和表征。探讨了合金在PBS模拟体液中的腐蚀行为。结果表明,Ca、Zn及Mn原子的复合加入可显著... 利用真空感应熔炼,采用金属模浇铸制备了Mg(100-x-y-z)-Znx-Cay-Mnz四元合金。使用光学显微镜、X射线衍射仪、扫描电镜及能谱仪对合金进行分析和表征。探讨了合金在PBS模拟体液中的腐蚀行为。结果表明,Ca、Zn及Mn原子的复合加入可显著细化合金的铸态显微组织;镁合金的腐蚀发生于晶粒内部,至晶界处终止;当加入2.0%的Zn和0.5%的Ca时,铸态合金的抗腐蚀性能最佳(平均腐蚀速率为0.77mm/a);当Zn、Ca含量均大于1%时,固溶时效态合金的腐蚀速率下降为铸态的1/2~1/4,表现出优异的耐蚀性;固溶时效处理可有效减少Mg2Ca相的体积分数,改善其分布,提高合金的耐蚀性能。 展开更多
关键词 Mg-Zn-Ca-Mn合金PBS模拟体液组织腐蚀行为
下载PDF
Influence of freezing rate on microstructure and electrochemical properties of Mg-2%Ga alloys 被引量:1
4
作者 冯艳 王日初 彭超群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1047-1051,共5页
Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using... Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using OM and SEM. Electrochemical properties of the Mg-2%Ga alloys with different freezing rates were measured by galvanostatic, potentiodynamic and electrochemical impedance spectroscopy tests. The results show that solidification by copper mould leads to intergranular MgsGa2 compounds with small size and large number density. Less adsorbent of Mg^+ and oxide corrosion products occur on the surface of the Mg-2%Ga alloys solidified by copper mould, producing lower corrosion current density of 1.8×10^-5 mA/cm^2. In the galvanostatic tests with 100 mA/cm^2 current density, more negative stable potential of-1.604 V exists in the Mg-2%Ga alloys solidified by iron mould due to the lower freezing rate, which leads to smaller inductive and capacity time constants as well as shorter activity time and better electrochemical activity. 展开更多
关键词 Mg-Ga alloy electrode materials electrochemical reaction MICROSTRUCTURE computer simulation
下载PDF
Formation characteristic of Ca-P coatings on magnesium alloy surface 被引量:4
5
作者 刘广义 唐莎巍 +2 位作者 王川 胡津 李德超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2294-2299,共6页
A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructure... A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructures of the coating before and after immersion in the simulated body fluid were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) The results indicated that the dicalcium phosphate dehydrate coatings exhibited two morphologies during the pre-calcification process. The titration speed of the pre-calcification process had great influence on the morphologies of the pre-calcification coatings. As the soaking time increased, the diffraction peaks of dicalcium phosphate dehydrate disappeared and hydroxyapatite precipitated on the coated substrate surfaces. This indicates the dissolution of dicalcium phosphate dehydrate during the immersion process. The structures of the dicalcium phosphate dehydrate coatings and the formation mechanisms of the hydroxyapatite coatings were investigated in detail. 展开更多
关键词 magnesium alloy Ca-P coatings microstructure simulated body fluid
下载PDF
会议与展览会
6
《机械制造文摘(焊接分册)》 1996年第6期2-3,共2页
国际焊接学会ixB分委焊接性数值预测工作组在奥大利亚的格拉茨市召开了第三届焊接性数值预测国际会议。会上对下列专题作了讨论:焊接熔池现象、焊接熔池结晶、焊缝和热影响区金属中的显微组织模拟、焊后热处理的影响。
关键词 国际会议 数值预测 展览会 焊接性 焊接与切割 焊接熔池 显微组织模拟 焊后热处理 接头力学性能 热影响区
下载PDF
Effect of liquid diffusion coefficients on microstructure evolution during solidification of Al356.1 alloy 被引量:1
7
作者 孙伟华 张利军 +2 位作者 魏明 杜勇 黄伯云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3722-3728,共7页
(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of di... (The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification. 展开更多
关键词 Al356.1 alloy SOLIDIFICATION microstructure evolution diffusion coefficient phase-field simulation
下载PDF
Effect of Al-foil addition on microstructure and temperature field of laser fusion welded joints of DP590 dual-phase steel and AZ31B magnesium alloy 被引量:9
8
作者 He ZHOU Jin-shui LIU +1 位作者 Dian-wu ZHOU Tao TAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2669-2680,共12页
The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMS... The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy. 展开更多
关键词 dissimilar metal welding MICROSTRUCTURE numerical simulation Al-foil
下载PDF
Hot deformation behavior of Ti-6Al-4V-0.1Ru alloy during isothermal compression 被引量:10
9
作者 Yu-feng XIA Wei JIANG +2 位作者 Qian CHENG Lai JIANG Li JIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期134-146,共13页
The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate ... The hot deformation behavior of Ti-6 Al-4 V-0.1 Ru titanium alloy was investigated by isothermal compression tests on a Gleeble-3500 thermal simulator over deformation temperature range of 1023-1423 K and strain rate of 0.01-10 s-1.Arrhenius-type constitutive models were developed for temperature ranges of bothα+βdual phase andβsingle phase at strain of 0.1.Afterwards,a series of material constants(including activation energy Q,material constants n,αand ln A)as polynomial functions of strain were introduced into Arrhenius-type models.Finally,the improved Arrhenius-type models in temperature field ofα+βandβphase were constructed.The results show that the improved Arrhenius-type models contribute to the calculation of Zener-Hollomon(Z)parameter,and the microstructural evolution mechanism is uncovered by combining microstructure observations with Z-parameter.Furthermore,the improved Arrhenius-type models are also helpful to improve the accuracy of finite element method(FEM)simulation in the deformation process of Ti-6 Al-4 V-0.1 Ru titanium alloy. 展开更多
关键词 Ti-6Al-4V-0.1Ru titanium alloy Arrhenius-type constitutive model Zener-Hollomon parameter microstructural evolution FEM simulation
下载PDF
Cellular automaton simulation of dynamic recrystallization behavior in V-10Cr-5Ti alloy under hot deformation conditions 被引量:5
10
作者 Zhuo-han CAO Yu SUN +4 位作者 Chen ZHOU Zhi-peng WAN Wen-hua YANG Li-li REN Lian-xi HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期98-111,共14页
The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocatio... The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains. 展开更多
关键词 V-10Cr-5Ti alloy hot deformation dynamic recrystallization cellular automaton MICROSTRUCTURE numerical simulation grain refinement
下载PDF
Microscopic phase-field simulation for nucleation incubation time of Ni_(75)Al_xV_(25-x)alloy 被引量:2
11
作者 李永胜 陈铮 +2 位作者 卢艳丽 王永欣 张建军 《Journal of Central South University of Technology》 EI 2005年第6期635-640,共6页
With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precip... With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precipitation mechanism was investigated by using the atomic occupation probability picture and average order parameter curve. The simulation results demonstrate that there exists the incubation time for different precipitation mechanisms~ such as non-classical nucleation, the mixed style of non-classical nucleation and spinodal decomposition, and spinodal ordering; and the incubation time shortens in turn for the three kinds of mechanisms. With the increase of Al content of Ni75AlxV25-x alloy, the incubation time of Llz phases shortens continuously and that of DOzz phases is prolonged. The effects of temperature on the incubation time of Llz and DOzz phases are accordant, i.e. the incuba- tion time is greatly prolonged with the temperature rising. 展开更多
关键词 microscopic phase-field NUCLEATION incubation time order parameter SIMULATION
下载PDF
A novel method to improve interfacial bonding of compound squeeze cast Al/Al-Cu macrocomposite bimetals:Simulation and experimental studies 被引量:6
12
作者 Mohammad Hossein BABAEE Ali MALEKI Behzad NIROUMAND 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1184-1199,共16页
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th... A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert. 展开更多
关键词 Al/Al-4.5wt.%Cu macrocomposite bimetal interfacial bonding surface machining pattern microstructure mechanical properties simulation
下载PDF
An extrusion-shear-expanding process for manufacturing AZ31 magnesium alloy tube 被引量:2
13
作者 Ye TIAN Hong-jun HU +4 位作者 Hui ZHAO Wei ZHANG Peng-cheng LIANG Bin JIANG Ding-fei ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2569-2577,共9页
A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process ... A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process combines direct extrusion with a two-step shear−expanding process.The influences of expanding ratios,extrusion temperatures on the deformation of finite element meshes,strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software.Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process.The deformation of finite element meshes of tube blanks is inhomogeneous in the shear−expanding zone,and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy.A extrusion temperature of 380°C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results.The average grain size of tubes fabricated by the TCESE process is approximately 10μm.The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization.The(0001)basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process.The average hardness of the extruded tubes is approximately HV 75,which is obviously improved. 展开更多
关键词 AZ31 magnesium alloy expanding ratio continuous extrusion-shear numerical simulation MICROSTRUCTURES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部