Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool ...Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool wear status. Results show that good surface integrity of TC21 can be obtained in high speed milling. In addition, even in acutely worn stages, there is no so-called serious hardening layer (or white layer) according to the studies on microhardness and metallurgical structure.展开更多
In order to study the effect of the withdrawing rate on carbide morphology,MC-type carbide in single crystal superalloy AM3 was systematically investigated with sample growth rates from 3.5 μm/s to 500 μm/s.The carb...In order to study the effect of the withdrawing rate on carbide morphology,MC-type carbide in single crystal superalloy AM3 was systematically investigated with sample growth rates from 3.5 μm/s to 500 μm/s.The carbide morphologies were investigated by scanning electron microscopy(SEM),and the electron probe microanalysis(EPMA) was used to characterize the carbide composition.The results indicate that the solidification rate is the important factor governing MC carbide growth morphology,size and distribution,composition and growth mechanism.With the increase of withdrawing rate,nodular,rod-like,Chinese script types of carbide morphology are observed.For the low withdrawing rate,with the increase of withdrawing rate,the carbide size becomes larger.For the case of dendritic interface,the carbide size becomes smaller with refinement of dendrites as withdrawing rate increases.The volume fraction of carbides increases with the withdrawing rate increasing.展开更多
We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrum- resolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond st...We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrum- resolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond streak camera for providing time- and spectrum- resolved measurement and imaging in biomedicine. The performance of the system is tested and characterized by the fluorescence spectrum and lifetime analysis of several standard fluorescent dyes and their mixtures. Spectrum-resolved fluorescence lifetime images of fluorescence beads are obtained. Potential applications of the system include clinical diagnostics and cell biology etc.展开更多
This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surfa...This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surface of fly was conducted to examine the wing characteristics. Microscopic observation of fly's wings were also conducted by using a laser beam microscope. The results of a series of observation and measurement revealed the flight characteristics of flies, such as the wing tip velocity, wing path, wing flexibility, wing structure, resistance to rain drops, and so forth.展开更多
基金Supported by the National Natural Science Foundation of China(50975141)the National Scienceand Technology Major Project(2010ZX04012-042)the Aeronautical Science Foundation(2010352005)~~
文摘Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool wear status. Results show that good surface integrity of TC21 can be obtained in high speed milling. In addition, even in acutely worn stages, there is no so-called serious hardening layer (or white layer) according to the studies on microhardness and metallurgical structure.
基金Projects(50771081, 50931004) supported by the National Natural Science Foundation of ChinaProject(2010CB631202) supported by the National Basic Research Program of China
文摘In order to study the effect of the withdrawing rate on carbide morphology,MC-type carbide in single crystal superalloy AM3 was systematically investigated with sample growth rates from 3.5 μm/s to 500 μm/s.The carbide morphologies were investigated by scanning electron microscopy(SEM),and the electron probe microanalysis(EPMA) was used to characterize the carbide composition.The results indicate that the solidification rate is the important factor governing MC carbide growth morphology,size and distribution,composition and growth mechanism.With the increase of withdrawing rate,nodular,rod-like,Chinese script types of carbide morphology are observed.For the low withdrawing rate,with the increase of withdrawing rate,the carbide size becomes larger.For the case of dendritic interface,the carbide size becomes smaller with refinement of dendrites as withdrawing rate increases.The volume fraction of carbides increases with the withdrawing rate increasing.
基金This work was supported by the National Natural Science Foun-dation of China (60627003, 60408011)Guangdong Natural Science Foundation (5010500)was also supported in part by Shenzhen Sci & Tech Program (200516).
文摘We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrum- resolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond streak camera for providing time- and spectrum- resolved measurement and imaging in biomedicine. The performance of the system is tested and characterized by the fluorescence spectrum and lifetime analysis of several standard fluorescent dyes and their mixtures. Spectrum-resolved fluorescence lifetime images of fluorescence beads are obtained. Potential applications of the system include clinical diagnostics and cell biology etc.
文摘This paper is concerned with the aerodynamic functions of fly wings. The free and tethered flight analyses were performed by using a digital high-speed video camera system. A liquid droplet impacting with a wing surface of fly was conducted to examine the wing characteristics. Microscopic observation of fly's wings were also conducted by using a laser beam microscope. The results of a series of observation and measurement revealed the flight characteristics of flies, such as the wing tip velocity, wing path, wing flexibility, wing structure, resistance to rain drops, and so forth.