Objective: Laser capture microdisection has become indispensable to the analysis of the difference of gene expression between human bladder transitional cell and bladder transitional cell carcinoma (BTCC). However,...Objective: Laser capture microdisection has become indispensable to the analysis of the difference of gene expression between human bladder transitional cell and bladder transitional cell carcinoma (BTCC). However, to obtain sufficient RNA from laser-capture microdissected cells is quite difficult. The study was designed to determinc a feasible technical routine to isolate transitional cells from bladder membrane, separate carcinoma cclls from stromal cells and to amplify the RNA isolated from laser-capture microdissected cells. Methods: Bladder transitional cell were obtained from frozen sections of bladder membrane applying LCM, by the same token, BTCC cells from frozen sections of BTCC tissue. Then RNA was extracted and linearly amplified in vitro. The expression levels of β-actin in primary total RNA and amplified RNA were detected using RT-PCR. Results: That RNA integrity was good after LCM was confirmed by control experiment Ⅰ; By control experiment Ⅱ, the correlation between the number of LCM-shooting and RNA quantity undcr arranged conditions was preliminarily confirmed. About 0.5-2.5kb RNA fragments were obtained after RNA amplification and β-actin levels were integral. Conclusion: Laser capture microdissection combined with RNA linear amplification in vitro can be successfully applied to obtain pure objective cells for research. The integrity of the amplified RNA is good and can be employed in further research.展开更多
[Objective] The aim was to explore the reasons of false positives in Different Display Reverse Transcription(DDRT)analysis.[Method] Soybean varieties "Jilin 30" and "Tongnong 13" were used as materials to carry ...[Objective] The aim was to explore the reasons of false positives in Different Display Reverse Transcription(DDRT)analysis.[Method] Soybean varieties "Jilin 30" and "Tongnong 13" were used as materials to carry out analysis on false positives in DDRT analysis.[Result] An important origin of false positives appeared in DDRT analysis was the non-specific amplification caused by the combination of single primer and cDNA.The parallel PCR test of single primer should be set so as to verify whether the obtained fragments were the false positives or the PCR productions combined with single primer.[Conclusion] This study had provided basis for improving the success rate of DDRT experiment.展开更多
Welding is a vital component of several industries such as automotive,aerospace,robotics,and construction.Without welding,these industries utilize aluminum alloys for the manufacturing of many components or systems.Ho...Welding is a vital component of several industries such as automotive,aerospace,robotics,and construction.Without welding,these industries utilize aluminum alloys for the manufacturing of many components or systems.However,fusion welding of aluminum alloys is challenging due to several factors,including the presence of non-heat-treatable alloys,porosity,solidification,and liquation of cracks.Many manufacturers adopt conventional in-air friction stir welding(FSW)to weld metallic alloys and dissimilar materials.Many researchers reported the drawbacks of this traditional in-air FSW technique in welding metallic and polymeric materials in general and aluminum alloys and aluminum matrix composites in specific.A number of FSW techniques were developed recently,such as underwater friction stir welding(UFSW),vibrational friction-stir welding(VFSW),and others,for welding of aluminum alloy joints to overcome the issues of welding using conventional FSW.Therefore,the main objective of this review is to summarize the recent trends in FSW process of aluminum alloys and aluminum metal matrix composites(Al MMCs).Also,it discusses the effect of welding parameters of the traditional and state-of-the-art developed FSW techniques on the welding quality and strength of aluminum alloys and Al MMCs.Comparison among the techniques and advantages and limitations of each are considered.The review suggests that VFSW is a viable option for welding aluminum joints due to its energy efficiency,economic cost,and versatile modifications that can be employed based on the application.This review also illustrated that significantly less attention has been paid to FSW of Al-MMCs and considerable attention is demanded to produce qualified joint.展开更多
We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molec...We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.展开更多
Molecular imaging(MI)can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques.Over the past decade,the util...Molecular imaging(MI)can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques.Over the past decade,the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects.It is expected that multimodality nanoparticles(NPs)can lead to precise assessment of tumor biology and the tumor microenvironment.This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging,ultrasound,photoacoustic imaging,magnetic resonance imaging(MRI),and radionuclide imaging.Key challenges involved in the translation of NPs to the clinic are discussed.展开更多
Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical micro...Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.展开更多
Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloye...Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloyed with WC-12%Co powder using a high power fibre laser.The wear properties of the base material and laser alloying samples were investigated by tribometer with various parameters,i.e.,temperature,load and sliding speed.Based on experimental test,the load has maximum percentage of contribution and followed by sliding speed and working temperature.The optimized tribological parameters by Grey relational analysis(GRA)were established and those values are closely matched with predicted values.Besides,base material and laser alloying surfaces were examined through Vickers hardness machine,scanning electron microscopy(SEM)and roughness tester.The laser altered specimen shows no defects and improves the wear properties than substrates.The identified optimal tribological parameters are load of 30 N,speed of 0.5 m/s and working temperature of 300℃,and load of 30 N,speed of 0.5 m/s and working temperature of 200℃ for base metal and laser alloying samples,respectively.展开更多
Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(...Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.展开更多
Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were ch...Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were characterized by BET (Brunauer Emmett Teller), XRD (X-ray diffractometer), SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) to understand the surface area, phase, structure, morphology and electrical conductivity of the respective electrode material. The surface area was obtained as 2.312 m2"g"l and 0.892 m2"g"1, respectively for 12% of activated carbon in the expander of negative and 0.70% of TiO2 (Titanium dioxide) in the PAM (positive active material). The structural analysis reveals an increase in the tetrabasic lead sulfate and also evidenced by well grown crystals in the PAM with the TiO2, respectively obtained by XRD and SEM techniques. The impedance spectra analysis shows an increase of electrical conductivity of negative active mass with temperature. The battery results showing two fold enhancements in the charge acceptance were attributed to the high surface area activated carbon in the NAM (negative active material). The materials properties of electrodes and their influence on the battery performance were discussed.展开更多
文摘Objective: Laser capture microdisection has become indispensable to the analysis of the difference of gene expression between human bladder transitional cell and bladder transitional cell carcinoma (BTCC). However, to obtain sufficient RNA from laser-capture microdissected cells is quite difficult. The study was designed to determinc a feasible technical routine to isolate transitional cells from bladder membrane, separate carcinoma cclls from stromal cells and to amplify the RNA isolated from laser-capture microdissected cells. Methods: Bladder transitional cell were obtained from frozen sections of bladder membrane applying LCM, by the same token, BTCC cells from frozen sections of BTCC tissue. Then RNA was extracted and linearly amplified in vitro. The expression levels of β-actin in primary total RNA and amplified RNA were detected using RT-PCR. Results: That RNA integrity was good after LCM was confirmed by control experiment Ⅰ; By control experiment Ⅱ, the correlation between the number of LCM-shooting and RNA quantity undcr arranged conditions was preliminarily confirmed. About 0.5-2.5kb RNA fragments were obtained after RNA amplification and β-actin levels were integral. Conclusion: Laser capture microdissection combined with RNA linear amplification in vitro can be successfully applied to obtain pure objective cells for research. The integrity of the amplified RNA is good and can be employed in further research.
文摘[Objective] The aim was to explore the reasons of false positives in Different Display Reverse Transcription(DDRT)analysis.[Method] Soybean varieties "Jilin 30" and "Tongnong 13" were used as materials to carry out analysis on false positives in DDRT analysis.[Result] An important origin of false positives appeared in DDRT analysis was the non-specific amplification caused by the combination of single primer and cDNA.The parallel PCR test of single primer should be set so as to verify whether the obtained fragments were the false positives or the PCR productions combined with single primer.[Conclusion] This study had provided basis for improving the success rate of DDRT experiment.
基金United Arab Emirates University (UAEU), Al-Ain, UAE, and Sultan Qaboos University (SQU), Muscat, Sultanate of Oman, for providing research support through a collaborative research project (UAEU: 31N270)。
文摘Welding is a vital component of several industries such as automotive,aerospace,robotics,and construction.Without welding,these industries utilize aluminum alloys for the manufacturing of many components or systems.However,fusion welding of aluminum alloys is challenging due to several factors,including the presence of non-heat-treatable alloys,porosity,solidification,and liquation of cracks.Many manufacturers adopt conventional in-air friction stir welding(FSW)to weld metallic alloys and dissimilar materials.Many researchers reported the drawbacks of this traditional in-air FSW technique in welding metallic and polymeric materials in general and aluminum alloys and aluminum matrix composites in specific.A number of FSW techniques were developed recently,such as underwater friction stir welding(UFSW),vibrational friction-stir welding(VFSW),and others,for welding of aluminum alloy joints to overcome the issues of welding using conventional FSW.Therefore,the main objective of this review is to summarize the recent trends in FSW process of aluminum alloys and aluminum metal matrix composites(Al MMCs).Also,it discusses the effect of welding parameters of the traditional and state-of-the-art developed FSW techniques on the welding quality and strength of aluminum alloys and Al MMCs.Comparison among the techniques and advantages and limitations of each are considered.The review suggests that VFSW is a viable option for welding aluminum joints due to its energy efficiency,economic cost,and versatile modifications that can be employed based on the application.This review also illustrated that significantly less attention has been paid to FSW of Al-MMCs and considerable attention is demanded to produce qualified joint.
文摘We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.
文摘Molecular imaging(MI)can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques.Over the past decade,the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects.It is expected that multimodality nanoparticles(NPs)can lead to precise assessment of tumor biology and the tumor microenvironment.This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging,ultrasound,photoacoustic imaging,magnetic resonance imaging(MRI),and radionuclide imaging.Key challenges involved in the translation of NPs to the clinic are discussed.
基金Project(61391) supported by the National Security Basic Research Program of ChinaProject (91016029) supported by the National Natural Science Foundation of China
文摘Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.
文摘Pearlitic ductile irons(PDIs)are used in transportation and nuclear energy industries.In heavy loading situation,the service life of PDI is affected by numerous tribo aspects.In this study,surface of the PDI is alloyed with WC-12%Co powder using a high power fibre laser.The wear properties of the base material and laser alloying samples were investigated by tribometer with various parameters,i.e.,temperature,load and sliding speed.Based on experimental test,the load has maximum percentage of contribution and followed by sliding speed and working temperature.The optimized tribological parameters by Grey relational analysis(GRA)were established and those values are closely matched with predicted values.Besides,base material and laser alloying surfaces were examined through Vickers hardness machine,scanning electron microscopy(SEM)and roughness tester.The laser altered specimen shows no defects and improves the wear properties than substrates.The identified optimal tribological parameters are load of 30 N,speed of 0.5 m/s and working temperature of 300℃,and load of 30 N,speed of 0.5 m/s and working temperature of 200℃ for base metal and laser alloying samples,respectively.
基金Project(51274247) supported by the National Natural Science Foundation of ChinaProject(2014zzts177) support by the Fundamental Research Funds for the Central Universities,China
文摘Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.
文摘Effect of titanium dioxide (TiO2) and carbon additives in the respective positive and negative material properties and the influence on the performance of the battery were investigated. The electrode samples were characterized by BET (Brunauer Emmett Teller), XRD (X-ray diffractometer), SEM (scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) to understand the surface area, phase, structure, morphology and electrical conductivity of the respective electrode material. The surface area was obtained as 2.312 m2"g"l and 0.892 m2"g"1, respectively for 12% of activated carbon in the expander of negative and 0.70% of TiO2 (Titanium dioxide) in the PAM (positive active material). The structural analysis reveals an increase in the tetrabasic lead sulfate and also evidenced by well grown crystals in the PAM with the TiO2, respectively obtained by XRD and SEM techniques. The impedance spectra analysis shows an increase of electrical conductivity of negative active mass with temperature. The battery results showing two fold enhancements in the charge acceptance were attributed to the high surface area activated carbon in the NAM (negative active material). The materials properties of electrodes and their influence on the battery performance were discussed.