A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro...A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro-discharge array, a high-pressure high-current density glow discharge plasmas can be formed to make a plasma display panel (PDP). An air discharge experiment is finished with the discharge device. The stable direct current glow discharge is formed under the pressure from 20 Torr to 500 Torr. The voltage-current characteristic curve and the discharge photograph are noted. The voltage-current characteristic curve has a positive differential resistance coefficient on the whole discharge range. The estimated current density reaches 70.1A/cm^3, the power density is 3.6×10^4 W/cm^3, and the electron density is in the order of 10^13 cm^-3 at p = 200 Torr and ID = 10 mA. The experimental results indicate that the desiclned discharqe device is appropriate for PDP.展开更多
High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expe...High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expected as the next generation lighting source due to its continuously improving luminous efficacy, better color characteristic, and super long life-time. The two lighting sources may coexist in street lighting applications for a long time. A novel HPS and LED compatible driver is proposed which is rather suitable and flexible for driving HPS and LED in street lighting applications. The proposed driver combines the LLC and LCC resonant circuits into a flexible resonant tank. The flexible resonant tank may change to LLC or isolated LCC circuit according to the lighting source. It inherits the traditional HPS and LED drivers' zero voltage switching (ZVS) characteristics and dimmable function. The design of the proposed flexible resonant tank considers the requirements of both HPS and LED. The experiments of driving HPS and LED on a prototype driver show that the driver can drive the two lighting sources flexibly with high efficiency.展开更多
文摘A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro-discharge array, a high-pressure high-current density glow discharge plasmas can be formed to make a plasma display panel (PDP). An air discharge experiment is finished with the discharge device. The stable direct current glow discharge is formed under the pressure from 20 Torr to 500 Torr. The voltage-current characteristic curve and the discharge photograph are noted. The voltage-current characteristic curve has a positive differential resistance coefficient on the whole discharge range. The estimated current density reaches 70.1A/cm^3, the power density is 3.6×10^4 W/cm^3, and the electron density is in the order of 10^13 cm^-3 at p = 200 Torr and ID = 10 mA. The experimental results indicate that the desiclned discharqe device is appropriate for PDP.
基金supported by the National Natural Science Foundation of China(No.51177148)
文摘High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expected as the next generation lighting source due to its continuously improving luminous efficacy, better color characteristic, and super long life-time. The two lighting sources may coexist in street lighting applications for a long time. A novel HPS and LED compatible driver is proposed which is rather suitable and flexible for driving HPS and LED in street lighting applications. The proposed driver combines the LLC and LCC resonant circuits into a flexible resonant tank. The flexible resonant tank may change to LLC or isolated LCC circuit according to the lighting source. It inherits the traditional HPS and LED drivers' zero voltage switching (ZVS) characteristics and dimmable function. The design of the proposed flexible resonant tank considers the requirements of both HPS and LED. The experiments of driving HPS and LED on a prototype driver show that the driver can drive the two lighting sources flexibly with high efficiency.