期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多任务深度卷积神经网络的显著性对象检测算法 被引量:12
1
作者 杨帆 李建平 +1 位作者 李鑫 陈雷霆 《计算机应用》 CSCD 北大核心 2018年第1期91-96,共6页
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一... 针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。 展开更多
关键词 显著性对象检测 深度学习 边缘检测 多任务神经网络 显著 卷积神经网络
下载PDF
基于结构感知深度神经网络的显著性对象检测算法 被引量:5
2
作者 李鑫 陈雷霆 蔡洪斌 《计算机应用研究》 CSCD 北大核心 2019年第7期2195-2199,共5页
由于现有的基于深度神经网络的显著性对象检测算法忽视了对象的结构信息,使得显著性图不能完整地覆盖整个对象区域,导致检测的准确率下降。针对此问题,提出一种结构感知的深度显著性对象检测算法。该算法基于一种多流结构的深度神经网络... 由于现有的基于深度神经网络的显著性对象检测算法忽视了对象的结构信息,使得显著性图不能完整地覆盖整个对象区域,导致检测的准确率下降。针对此问题,提出一种结构感知的深度显著性对象检测算法。该算法基于一种多流结构的深度神经网络,包括特征提取网络、对象骨架检测子网络、显著性对象检测子网络和跨任务连接部件四个部分。首先,在显著性对象子网络的训练和测试阶段,通过对象骨骼检测子网络学习对象的结构信息,并利用跨任务连接部件使得显著性对象检测子网络能自动编码对象骨骼子网络学习的信息,从而感知对象的整体结构,克服对象区域检测不完整问题;其次,为了进一步提高所提方法的准确率,利用全连接条件随机场对检测结果进行进一步的优化。在三个公共数据集上的实验结果表明,该算法在检测的准确率和运行效率上均优于现有存在的基于深度学习的算法,这也说明了在深度神经网络中考虑对象结构信息的捕获是有意义的,有助于提高模型准确率。 展开更多
关键词 显著性对象检测 深度学习 显著 卷积神经网络 对象骨架检测
下载PDF
基于双层多尺度神经网络的显著性对象检测算法 被引量:1
3
作者 李鑫 陈雷霆 +2 位作者 蔡洪斌 李建平 杨帆 《微电子学与计算机》 CSCD 北大核心 2018年第11期1-7,共7页
为了提高显著性对象检测的准确率,本文提出一种基于双层多尺度神经网络的深度模型.不同于现有的深度神经网络模型.首先,该模型以由精到粗的方式进行深度特征学习,并且定位显著性对象的初始位置;然后,以由粗到精的方式整合多尺度上下文... 为了提高显著性对象检测的准确率,本文提出一种基于双层多尺度神经网络的深度模型.不同于现有的深度神经网络模型.首先,该模型以由精到粗的方式进行深度特征学习,并且定位显著性对象的初始位置;然后,以由粗到精的方式整合多尺度上下文语义信息,从而精确检测整个显著性对象区域,输出相应的显著性图;最后,为了进一步提高检测结果的准确率,利用全连接条件随机场对输出的显著性图进行优化,得到最终的显著性对象检测结果.在多个显著性对象检测公共数据集的验证结果表明,本文算法在运行效率和准确率上均优于当前传统显著性对象检测算法以及现有的基于深度学习的显著性对象检测算法. 展开更多
关键词 显著性对象检测 深度学习 深度卷积网络 条件随机场
下载PDF
基于金字塔特征与边缘优化的显著性对象检测
4
作者 田旭 彭飞 +2 位作者 刘飞 陈庆文 闫馨宇 《郑州大学学报(工学版)》 CAS 北大核心 2022年第2期35-43,共9页
针对图像显著性对象检测领域中多尺度特征提取不充分、对象边缘模糊等问题,提出了一个端到端的基于注意力嵌入的金字塔特征以及渐进边缘优化的显著性对象检测模型。首先,设计了由多个扩张卷积构成的注意力嵌入的密集空洞金字塔模块(AEDA... 针对图像显著性对象检测领域中多尺度特征提取不充分、对象边缘模糊等问题,提出了一个端到端的基于注意力嵌入的金字塔特征以及渐进边缘优化的显著性对象检测模型。首先,设计了由多个扩张卷积构成的注意力嵌入的密集空洞金字塔模块(AEDAPM),在不减小特征分辨率的前提下,得到丰富且有效的多级多尺度特征;其次,为了解决显著性对象边缘模糊的问题,提出了渐进边缘优化模块(SEOM),在特征恢复分辨率的过程中逐步补充空间细节信息,使模型检测出的显著对象能够拥有清晰的边缘轮廓。在DUTS-TE、ECSSD、DUT-OMRON、HKU-IS、PASCAL-S 5个显著性领域公开的数据集上与其他12种已有的先进方法在3个常用指标下进行了比较,结果表明:所提方法能够得到更加准确、边缘更加清晰的显著性结果。此外,自对比实验也充分证明了提出的注意力嵌入的密集空洞金字塔模块和渐进边缘优化模块的有效性。 展开更多
关键词 显著性对象检测 多尺度特征提取 全卷积神经网络 边缘特征提取 深度学习
下载PDF
基于多尺度信息处理和Gabor初始化的图像显著性对象检测 被引量:1
5
作者 闯跃龙 张石清 赵小明 《光电子.激光》 EI CAS CSCD 北大核心 2020年第8期834-841,共8页
基于全卷积网络的图像显著性检测获得了广泛的关注,并取得了令人瞩目的检测性能。然而,该类型神经网络依然存在许多问题,如高复杂网络导致难以训练、显著性对象边缘结果不准确等。针对这些问题,本文提出基于Gabor初始化的卷积神经网络... 基于全卷积网络的图像显著性检测获得了广泛的关注,并取得了令人瞩目的检测性能。然而,该类型神经网络依然存在许多问题,如高复杂网络导致难以训练、显著性对象边缘结果不准确等。针对这些问题,本文提出基于Gabor初始化的卷积神经网络。该网络主要特点包括:1)利用Gabor特征初始化卷积神经网络,提高神经网络训练效率;2)构建多尺度桥接模块,有效衔接编码和解码阶段,进而提高显著性检测结果;3)提出加权交叉熵损失函数,提高训练效果。实验结果表明,本文提出的神经网络在三个不同的数据集上均显示出优异的显著性对象检测性能。 展开更多
关键词 多尺度信息 GABOR 显著性对象检测 卷积神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部