期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Dog-Leg正则化自适应压缩采样的植株图像重构 被引量:6
1
作者 沈跃 李尚龙 +1 位作者 刘慧 刘加林 《农业工程学报》 EI CAS CSCD 北大核心 2019年第12期191-199,共9页
目标植株的图像压缩与重构在农作物生长状态检测、田间管理和果树病虫害识别等方面有重要作用。传统的图像压缩感知方法存在重构精度低、时间长等问题。针对这些情况,该文提出一种基于Dog-Leg最小二乘的正则化自适应压缩采样匹配追踪(re... 目标植株的图像压缩与重构在农作物生长状态检测、田间管理和果树病虫害识别等方面有重要作用。传统的图像压缩感知方法存在重构精度低、时间长等问题。针对这些情况,该文提出一种基于Dog-Leg最小二乘的正则化自适应压缩采样匹配追踪(regularized adaptive compressed sampling matching pursuit based on Dog-Leg,DLRaCSMP)算法。该算法以压缩采样匹配追踪(compressive sampling matching pursuit,CoSaMP)算法为基础,在迭代过程中采用正则化处理,确保支撑集选取的准确性,并结合变步长自适应思想和Dog-Leg最小二乘算法,在实现稀疏度自适应的同时,提高重构速率;选用Kinect获取目标植株的彩色图像,分别采用HSV彩色空间的亮度和色调特征及Sobel算子的轮廓特征输入至Itti模型中融合构建显著性特征图,以简化复杂背景和突出目标植株。试验结果表明,该算法在采样率为0.50时植株原始图像和显著性特征图的重构时间分别为2.14和1.75 s,较CoSaMP算法分别缩短6.57和6.31 s,重构效率比CoSaMP算法平均分别提高75.5%和77.9%;图像峰值信噪比分别高达35.16和38.93 dB,较CoSaMP算法分别提高6.12和5.75 dB,且重构精度比CoSaMP算法平均分别提高21.6%和15.5%,可以实现植株图像的快速精确重构。 展开更多
关键词 像重构 算法 压缩感知 最小二乘法 显著性特征图 边缘检测
下载PDF
植株点云超体聚类分割方法 被引量:9
2
作者 刘慧 刘加林 +1 位作者 沈跃 潘成凯 《农业机械学报》 EI CAS CSCD 北大核心 2018年第12期172-179,共8页
针对传统的超体聚类分割对植株存在过分割率高、实时性差的问题,提出一种融合显著性特征图的超体聚类分割方法。首先,采用Kinect V2实时获取目标植株的彩色图像和深度图像,将RGB彩色空间图像转换为CIELab彩色空间图像,计算每个像素的显... 针对传统的超体聚类分割对植株存在过分割率高、实时性差的问题,提出一种融合显著性特征图的超体聚类分割方法。首先,采用Kinect V2实时获取目标植株的彩色图像和深度图像,将RGB彩色空间图像转换为CIELab彩色空间图像,计算每个像素的显著性特征值,获取彩色特征图,并融合亮度特征图和方向特征图构建显著性特征图;然后,将显著性特征图和深度图像同步对齐,获得显著性点云,八叉树网格初始化点云,并通过Mean-Shift算法获取满足概率密度阈值的网格点云,取最大概率密度点作为种子点,基于点对之间的欧氏距离和特征相似度作为区域生长相似性准则,生成超体素块;最后,通过LCCP算法对显著性点云进行聚类分割。实验结果表明,改进的显著性超体聚类分割方法可以大幅提高目标前景分割的准确性和快速性,有效克服背景噪声和离群点。 展开更多
关键词 三维点云 KINECT 显著性特征图 超体素 Nanoflann 深度信息
下载PDF
Thermal Infrared Salient Human Detection Model Combined with Thermal Features in Airport Terminal
3
作者 YU Yuecheng LIU Chang +1 位作者 WANG Chuan SHI Jinlong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期434-449,共16页
Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for... Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s. 展开更多
关键词 thermal infrared image human body detection SALIENCY thermal features lightweight model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部