期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合显著深度特征的RGB-D图像显著目标检测 被引量:9
1
作者 吴建国 邵婷 刘政怡 《电子与信息学报》 EI CSCD 北大核心 2017年第9期2148-2154,共7页
深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合... 深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合特征,根据构图先验和背景先验的方法进行显著目标检测。首先,对原始深度图进行预处理:使用背景顶点区域、构图交点和紧密度处理深度图,多角度融合形成深度显著图,并作为显著深度特征,结合颜色特征形成综合特征;其次,从前景角度,将综合特征通过边连接权重构造关联矩阵,根据构图先验,假设多层中心矩形为前景种子,通过流形排序方法计算出RGB-D图像的前景显著图;从背景角度,根据背景先验以及边界连通性计算出背景显著图;最后,将前景显著图和背景显著图进行融合并优化得到最终显著图。实验采用RGB-D1000数据集进行显著性检测,并与4种不同的方法进行对比,所提方法的显著性检测结果更接近人工标定结果,PR(查准率-查全率)曲线显示在相同召回率下准确率高于其他方法。 展开更多
关键词 显著目标检测 显著深度特征 多层中心矩形 流形排序 构图先验 背景先验
下载PDF
基于显著性语义区域加权的图像检索算法 被引量:8
2
作者 陈宏宇 邓德祥 +1 位作者 颜佳 范赐恩 《计算机应用》 CSCD 北大核心 2019年第1期136-142,共7页
针对计算视觉领域图像实例检索的问题,提出了一种基于深度卷积特征显著性引导的语义区域加权聚合方法。首先提取深度卷积网络全卷积层后的张量作为深度特征,并利用逆文档频率(IDF)方法加权深度特征得到特征显著图;然后将其作为约束,引... 针对计算视觉领域图像实例检索的问题,提出了一种基于深度卷积特征显著性引导的语义区域加权聚合方法。首先提取深度卷积网络全卷积层后的张量作为深度特征,并利用逆文档频率(IDF)方法加权深度特征得到特征显著图;然后将其作为约束,引导深度特征通道重要性排序以提取不同特殊语义区域深度特征,排除背景和噪声信息的干扰;最后使用全局平均池化进行特征聚合,并利用主成分分析(PCA)降维白化得到图像的全局特征表示,以进行距离度量检索。实验结果表明,所提算法提取的图像特征向量语义信息更丰富、辨识力更强,在四个标准的数据库上与当前主流算法相比准确率更高,鲁棒性更好。 展开更多
关键词 图像检索 卷积神经网络 深度特征显著 语义区域加权 特征聚合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部