Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for...Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.展开更多
为了进一步提升红外与可见光图像融合方法的性能,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解(multiscale local extrema decomposition,MLED)方法将源图像...为了进一步提升红外与可见光图像融合方法的性能,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解(multiscale local extrema decomposition,MLED)方法将源图像分解为近似图像和细节图像,分离出源图像中重叠的重要特征信息。然后采用残差网络ResNet152深度提取源图像的多维显著特征,以l_(1)-范数作为活性测度生成显著特征图,对近似图像进行加权平均融合,以保持能量和残留细节信息不丢失。在细节图像中,利用“系数绝对值取大”规则获得初始决策图,源图像作为引导图像,初始决策图作为输入图像进行引导滤波处理,得到优化决策图,计算加权局部能量得到能量显著图,对细节图像进行加权平均融合,使融合图像具有丰富的纹理细节和良好的视觉边缘感知。最后,对近似融合图像和细节融合图像进行重构,得到融合图像。实验结果表明,与现有的典型融合方法相比,本文所提出的融合方法在客观评价和视觉感受方面都取得了最好的效果。展开更多
基金supported in part by the National Key Research and Development Program of China(No. 2018YFC0309104)the Construction System Science and Technology Project of Jiangsu Province (No.2021JH03)。
文摘Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.
文摘为了进一步提升红外与可见光图像融合方法的性能,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解(multiscale local extrema decomposition,MLED)方法将源图像分解为近似图像和细节图像,分离出源图像中重叠的重要特征信息。然后采用残差网络ResNet152深度提取源图像的多维显著特征,以l_(1)-范数作为活性测度生成显著特征图,对近似图像进行加权平均融合,以保持能量和残留细节信息不丢失。在细节图像中,利用“系数绝对值取大”规则获得初始决策图,源图像作为引导图像,初始决策图作为输入图像进行引导滤波处理,得到优化决策图,计算加权局部能量得到能量显著图,对细节图像进行加权平均融合,使融合图像具有丰富的纹理细节和良好的视觉边缘感知。最后,对近似融合图像和细节融合图像进行重构,得到融合图像。实验结果表明,与现有的典型融合方法相比,本文所提出的融合方法在客观评价和视觉感受方面都取得了最好的效果。