Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magneti...Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.展开更多
Carbonate pedofeatures were studied in details in a loess-paleosol pedocomplex near Kursk, in the central part of the European Plain. The soils studied included a modern Chernozem and five Pleistocene paleosols. Carbo...Carbonate pedofeatures were studied in details in a loess-paleosol pedocomplex near Kursk, in the central part of the European Plain. The soils studied included a modern Chernozem and five Pleistocene paleosols. Carbonate morphologies and distributions were described in the field. Various morphologies were sampled for further studies including micromorphology in thin sections and submicroscopic studies under a scanning electron microscope. The complex approach of investigation at macro-, micro-, and submicroscopic levels found that most of carbonate pedofeatures are secondary and multiphase. Many of them are related to cryogenic features. The general trend was of decreasing carbonate content in the older paleosols except for increased content in the 1St and 3rd paleosols. Most of carbonate morphologies are similar in the modern soil and paleosols, but pseudomycelium was found only in the modern Chernozem, while soft masses and impregnations are associated with the paleosols. Detailed study on carbonate attributes revealed their specific features in the modern soil and in paleosols. Veins have dissolution features under the modern environment and seem to reprecipitate in form of pseudomycelium. Coatings in paleosols at a depth of the Ist paleosol include specific fine tubes. Powdery soft masses and impregnations in the paleosols are strongly related to cryogenic fissures and paleopermafrost level. Under SEM they consist of tiny crystals, much smaller than in regular soft masses. Several types of hard concretions were identified:rounded, irregular and platy. Small concretions in the modern Chernozem have similar morphology and similar 14C-age as the rounded concretions of the upper paleosols. They are expected to represent the same generation of concretions. Platy concretions fill the bottom part of the large fissures. The 14C-age of hard concretions varies from 3310±80 yrs. B.P in the Ist paleosol up to 20 400 yrs. B.P. in the 3^rd. As a result we found the reflection of several wet-dry and cold-warm stages in carbonate morphologies and distributions. High variability of carbonates at macro-, micro- and submicroscopic levels indicates several generations and multiphase formation of carbonate pedofeatures in the loess-paleosol pedocomplex. Carbonate pedofeatures in the examined pedocomplex are more informative for the study of late Pleistocene and Holocene climatic cycles rather than characterization of a single paleosol.展开更多
Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for th...Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for the evolution of East Asian climate during late Cenozoic have long been investigated and debated,particularly with regards to the role played by the Qinghai-Tibetan Plateau uplift and the global cooling.In this paper,we reviewed major research developments in this area,and summarized the important results.Based on a synthesis of data,we propose that the Qinghai-Tibetan Plateau uplift alone cannot fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22–25 Ma.Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role.Moreover,atmospheric CO2changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone(ITCZ),which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic.The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies.It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects.These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.展开更多
In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule...In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern conti- nental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including co- lumnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, A1, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terri- genous elements such as Fe, Si, REE, and A1 indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the micro- structures formed during this period are stack-like and columnar. The contents of Si and A1 are increased by nearly 10%, indi- cating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16% indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, A1, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, A1, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.展开更多
The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can si...The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and^(87)Sr/^(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and^(87)Sr/^(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and^(87)Sr/^(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.展开更多
Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possibl...Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possible for us to consider the processes and mechanisms of prehistoric human migration to the region. By reviewing the published archaeological research on the Tibetan Plateau, we propose that the first people on the plateau initially spread into the He-Huang region from the Chinese Loess Plateau, and then moved to the low elevation Northeastern Tibetan Plateau and perhaps subsequently to the entire plateau. This process consisted of four stages.(1) During the climatic amelioration of the Last Deglacial period(15–11.6 ka BP), Upper Paleolithic hunter-gatherers with a developed microlithic technology first spread into the Northeastern Tibetan Plateau.(2) In the early-mid Holocene(11.6–6 ka BP), Epipaleolithic microlithic hunter-gatherers were widely distributed on the northeastern plateau and spread southwards to the interior plateau, possibly with millet agriculture developed in the neighboring low elevation regions.(3) In the mid-late Holocene(6–4 ka BP), Neolithic millet farmers spread into low elevation river valleys in the northeastern and southeastern plateau areas.(4) In the late Holocene(4–2.3 ka BP), Bronze Age barley and wheat farmers further settled on the high elevation regions of the Tibetan Plateau, especially after 3.6 ka BP. Finally, we suggest that all of the reported Paleolithic sites earlier than the LGM on the Tibetan Plateau need further examination.展开更多
文摘Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.
基金supported by Russian Foundation for Basic Research (grants No 07-04-01146 and 06-05-65203)
文摘Carbonate pedofeatures were studied in details in a loess-paleosol pedocomplex near Kursk, in the central part of the European Plain. The soils studied included a modern Chernozem and five Pleistocene paleosols. Carbonate morphologies and distributions were described in the field. Various morphologies were sampled for further studies including micromorphology in thin sections and submicroscopic studies under a scanning electron microscope. The complex approach of investigation at macro-, micro-, and submicroscopic levels found that most of carbonate pedofeatures are secondary and multiphase. Many of them are related to cryogenic features. The general trend was of decreasing carbonate content in the older paleosols except for increased content in the 1St and 3rd paleosols. Most of carbonate morphologies are similar in the modern soil and paleosols, but pseudomycelium was found only in the modern Chernozem, while soft masses and impregnations are associated with the paleosols. Detailed study on carbonate attributes revealed their specific features in the modern soil and in paleosols. Veins have dissolution features under the modern environment and seem to reprecipitate in form of pseudomycelium. Coatings in paleosols at a depth of the Ist paleosol include specific fine tubes. Powdery soft masses and impregnations in the paleosols are strongly related to cryogenic fissures and paleopermafrost level. Under SEM they consist of tiny crystals, much smaller than in regular soft masses. Several types of hard concretions were identified:rounded, irregular and platy. Small concretions in the modern Chernozem have similar morphology and similar 14C-age as the rounded concretions of the upper paleosols. They are expected to represent the same generation of concretions. Platy concretions fill the bottom part of the large fissures. The 14C-age of hard concretions varies from 3310±80 yrs. B.P in the Ist paleosol up to 20 400 yrs. B.P. in the 3^rd. As a result we found the reflection of several wet-dry and cold-warm stages in carbonate morphologies and distributions. High variability of carbonates at macro-, micro- and submicroscopic levels indicates several generations and multiphase formation of carbonate pedofeatures in the loess-paleosol pedocomplex. Carbonate pedofeatures in the examined pedocomplex are more informative for the study of late Pleistocene and Holocene climatic cycles rather than characterization of a single paleosol.
基金supported by the Global Change Research Program of Ministry of Science and Technology of China(Grant No.2010CB950200)National Natural Science Foundation of China(Grant No.40930103)
文摘Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for the evolution of East Asian climate during late Cenozoic have long been investigated and debated,particularly with regards to the role played by the Qinghai-Tibetan Plateau uplift and the global cooling.In this paper,we reviewed major research developments in this area,and summarized the important results.Based on a synthesis of data,we propose that the Qinghai-Tibetan Plateau uplift alone cannot fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22–25 Ma.Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role.Moreover,atmospheric CO2changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone(ITCZ),which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic.The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies.It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects.These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.
基金supported by National Natural Science Foundation of China(Grant Nos.40972079,41172015 and 41030853)National Basic Research Program of China(Grant No.2007CB411703)Education Department of Hebei Province(Grant Nos.2009443,2010248)
文摘In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern conti- nental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including co- lumnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, A1, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terri- genous elements such as Fe, Si, REE, and A1 indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the micro- structures formed during this period are stack-like and columnar. The contents of Si and A1 are increased by nearly 10%, indi- cating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16% indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, A1, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, A1, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.
基金co-supported by the National Key R&D Program of China(Grant No.2016YFC0600103)the National Natural Science Foundation of China(Grant Nos.41473031,41530211)+1 种基金the National Program on Key Basic Research Project(Grant No.2015CB856101)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR01)
文摘The activity of melts and fluids may have played a key role in inducing the destruction of the eastern North China Craton in the early Cretaceous. Carbonate melts are important agents in mantle metasomatism and can significantly modify the physical and chemical properties of the subcontinental lithospheric mantle. Carbonate metasomatism can be identified by specific geochemical indices in clinopyroxene, such as high Ca/Al and low Ti/Eu ratios. This study presents the spatial and temporal variations of carbonate metasomatism in the lithospheric mantle beneath the eastern North China Craton. Three types of carbonate metasomatism are classified based on the geochemical compositions of clinopyroxene in mantle peridotites. Clinopyroxene formed by Type 1 carbonate metasomatism is characterized by very high Ca/Al ratios(15–70) and^(87)Sr/^(86)Sr ratios(0.706–0.713). Clinopyroxene derived from Type 2 carbonate metasomatism shows relatively high Ca/Al ratios(5–18) and^(87)Sr/^(86)Sr ratios(0.703–0.706). However, clinopyroxene resulting from Type 3 carbonate metasomatism has low Ca/Al ratios(5–9) and^(87)Sr/^(86)Sr ratios(0.702–0.704). Deep(garnet-bearing) and shallow(spinel-bearing) lithospheric mantle beneath the Sulu orogen and surrounding areas in the eastern North China Craton were affected by intense Type 1 carbonate metasomatism before the late Triassic. The deep subduction of the South China Block with its accompanying carbonate sediments was the trigger for Type 1 carbonate metasomatism, which reduced strength of the lithospheric mantle and provided a prerequisite for the destruction of the eastern North China Craton in the early Cretaceous. After the destruction of the eastern North China Craton, the ancient relict lithospheric mantle, represented by spinel harzburgite xenoliths hosted in the late Cretaceous to Cenozoic basalts,only recorded Type 2 carbonate metasomatism. This implies that the lithospheric mantle experienced the intense Type 1 carbonate metasomatism was completely destroyed and not preserved during decratonization. Spinel lherzolite xenoliths hosted in the late Cretaceous to Cenozoic basalts represent the young, fertile lithospheric mantle formed after the cratonic destruction and only a few samples record Type 2 and 3 carbonate metasomatisms. We suggest that carbonate melts derived from the subduction-modified asthenospheric mantle with variable proportions of recycled crustal material was responsible for the Type 2 and 3 carbonate metasomatisms. The carbonate metasomatism of the lithospheric mantle beneath the Jiaodong Peninsula and surrounding areas is very pervasive and is spatially consistent with the remarkable thinning of lithospheric mantle and giant gold deposits in this region. Therefore, we conclude that carbonate metasomatism in the lithospheric mantle played a crucial part in the modification, destruction and gold deposits in the eastern North China Craton.
基金supported by National Natural Science Foundation of China (Grant Nos. 41101087 & 41171168)the Project of Tracing Civilization Origin (Grant No. 2013BAK08B02)Primary Supports for Scientific Research of Lanzhou University (Grant Nos. LZUJBKY-2014-121, LZUJBKY-2016-159, LZUJBKY-2015-K09 & LZUJBKY-2014-120)
文摘Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possible for us to consider the processes and mechanisms of prehistoric human migration to the region. By reviewing the published archaeological research on the Tibetan Plateau, we propose that the first people on the plateau initially spread into the He-Huang region from the Chinese Loess Plateau, and then moved to the low elevation Northeastern Tibetan Plateau and perhaps subsequently to the entire plateau. This process consisted of four stages.(1) During the climatic amelioration of the Last Deglacial period(15–11.6 ka BP), Upper Paleolithic hunter-gatherers with a developed microlithic technology first spread into the Northeastern Tibetan Plateau.(2) In the early-mid Holocene(11.6–6 ka BP), Epipaleolithic microlithic hunter-gatherers were widely distributed on the northeastern plateau and spread southwards to the interior plateau, possibly with millet agriculture developed in the neighboring low elevation regions.(3) In the mid-late Holocene(6–4 ka BP), Neolithic millet farmers spread into low elevation river valleys in the northeastern and southeastern plateau areas.(4) In the late Holocene(4–2.3 ka BP), Bronze Age barley and wheat farmers further settled on the high elevation regions of the Tibetan Plateau, especially after 3.6 ka BP. Finally, we suggest that all of the reported Paleolithic sites earlier than the LGM on the Tibetan Plateau need further examination.